

ESA - Gaia astrometry

The Hyades and the solar neighborhood

All-sky astrometry, 2 109 point-like sources, V<20.5 mag, µas uncertainties Complemented by photometry (G, G_{BP}, G_{RP}) and spectroscopy (V<17 mag)

Gaia science goals

6D phase space and physical parameters (T_{eff}, logg, [Fe/H]) of Milky Way stars

on average ~70 observations in 5 yr

- Solar system, exoplanets, transients, variability
- The Milky Way, mass, dark matter, stellar content
- Local group, distant galaxies, QSOs
- Distance scale, reference frame, relativity

Flux calibration of Gaia

- Complex instrument
- Large focal plane
- 106 different CCDs
- Three instruments
- mmag photometry
- A grid of ~200 SPSS
- From WD to M stars
- ~1% calibration (Vega)
- Covering 330-1050 nm
- $R = \lambda/\delta\lambda \sim 2000$
- No existing literature grid matches all constraints

310 350 400 600 1000 600 700 800 1000 1200

BP/RP, R~100, V<20.5

RVS, R~10000, V<17

Gaia SPSS survey

- 8 instruments/telescopes
- Three campaigns
 - Constancy monitoring
 - Absolute photometry
 - Spectrophotometry
- 515 observing nights
- 9+ years (2005-2015)
- 200 000 frames obtained
- With 3-5 FTE each year
 - Core team: Pancino (PI), Altavilla, Marinoni, Cocozza, Ragaini, Galleti, Bellazzini, Bragaglia, Cacciari, Carrasco, Voss, Jordi, and others

Project status

- Funds INAF-ASI contracts (PI Lattanzi)
- Campaign status
 - Observations completed (2015)
 - Data (pre-)reductions completed (2016)
 - Data analysis (ongoing)
- Publications and deliveries
 - Survey description: Pancino et al., 2012
 - Data analysis: Altavilla et al., 2015
 - Constancy monitoring: Marinoni et al., 2016
- Deliveries
 - Pre-launch internal DPAC release: Oct 2013
 - First internal DPAC release: Jul 2015
- SPSS archive and DB at ASDC
 - ~10⁵ raw and reduced frames
 - Public with first flux table release (expected 2018)

Observing support

Ins@tel	Large prog	Req	Rej
ALFOSC@NOT	No	2 runs	o (o%)
BFOSC@Cassini	No	16 runs	o (o%)
CAFOS@CAHA	Yes (twice)	8 runs	1 (13%)
DOLORES@TNG	Partially	9 runs	1 (11%)
EFOSC2@NTT	Yes	9 runs	1 (11%)
MEIA@TJO	No	4 runs	0 (0%)
LaRuca@SPM	No	7 runs	0 (0%)
ROSS@REM	No	12 runs	0 (0%)

- Problem1: Difficult to get support for calibration programs (2-4m class)
- Problem2: Difficult to get continuative support (calibration monitoring)
- Problem3: The TNG TAC did not have stable policies from year to year

Final considerations

- Large space missions and surveys need ground-based support
 - For calibrations (for flux, radial velocity, benchmark stars, VLBI ...)
 - For follow-up and verification (Gaia science alerts, Variables, Gaia FUN-SSO)
 - For many other activities (Gaia GBOT ground-based optical tracking)
- Most support activities are ideal for 1-2m and 2-4m class telescopes
- Telescopes like the TNG could (should?) devote part of their time to support activities of nationally funded key projects like Gaia
- We are assembling the largest (~200 SPSS), most homogeneous and accurate (~1%), and the only constancy-monitored (±0.05 mag) SPSS grid for Gaia, useful for photometric and dark energy surveys as well

