

"La Palma's site characteristics fall in between these two extremes, but clearly offers an opportunity of economy of scale (5 2-4m telescopes) and is home to the largest telescope in this mid-range (the WHT 4.2m), as well as the 10.4-m GTC. The two 4-m telescopes in La Palma should be operating with clearly complementary instrumentation by mid-decade, as should the three 2-m facilities (which in the case of the LT is already specialised).

A strong recommendation of this report is that uniting and simplifying the operation of this group of telescopes is now urgent."

"A significant feature post-2015, it is hoped, will be the commissioning of a northern massively-multiplexed wide-field spectrograph. This is an important investment, of very broad interest across the European community. The fact that the CFHT is shared between ...

It would not be enough. "

: December 1st, 2010

Agreement

r the exchange of TNG observing nights for the full access to HARPS-N

Creation of the HARPS-N Consortium: CH+US+UK+IT

Definition and agreement on values and commitment

Co-PI, Exec Board: PI + 4 countries

Co-I, Science Team, 6+6+3+3

Pubs+Data policy ...

Date: December 1st, 2010

Agreement

For the exchange of TNG observing nights for the full access to HARPS-N

Exchange of full use of HARPS-N and Guaranteed Time

80 nights/yr (for 5 years, renewable) and commitment to keep TNG up-n-running

HARPS-N, DRS at TNG and IA2, commitment to maintain

large programs impact:

- * NO MORE QUEUING
- * harder for heavy monitoring
- * easier for ToO
- ----> ask magic AM!

TNG TOP 10 Number of citation as per 02/2017

	Santos N. C., Israelian		Spectroscopic [Fe/H] for 98 extra-solar planet 10 st to s
2004	G., Mayor M.	635	Exploring the probability of planet formation
	Ackermann M., Ajello		The Second Catalog of Active Galactic Nuclei Detected by
2011	M., Allafort A., et al.	418	the Fermi Large Area Telescope
	Abdo A. A.,		
	Ackermann M., Ajello		The First Catalog of Active Galactic Nuclei Detected by
2010	M., et al.	372	the Fermi Large Area Telescope
	Salvaterra R., Della		
	Valle M., Campana S.,		NICIC
2009	et al.	336	GRB090423 at a redshift of z~8.1
	Burrows D. N., Kennea		
	J. A., Ghisellini G., et		Relativistic jet activity from the tidal disruption of a star
2011	al.	248	by a massive black hole
			The Afterglows of Swift-era Gamma-ray Bursts. I.
	Kann D. A., Klose S.,		Comparing pre-Swift and Swift-era Long/Soft (Type II)
2010	Zhang B., et al.	232	GRB Optical Afterglows
	Fiore F., Brusa M.,		The HELLAS2XMM survey. IV. Optical identifications and
2003	Cocchia F., et al.	227	the evolution of the accretion luminosity in the Universe
	Gratton R. G., Carretta		Abundances for metal-poor stars with accurate
2003	E., Claudi R., et al.	226	parallaxes. I. Basic data
	Planck Collaboration,		
	Ade P. A. R., Aghanim		Planck 2013 results. XXIX. The Planck catalogue of
2014	N., et al.	226	Sunyaev-Zeldovich sources
	Mannucci F., Cresci G.,		LSD: Lyman-break galaxies Stellar populations and
2009	Maiolino R., et al.	225	Dynamics - I. Mass, metallicity and gas at z ~ 3.1

-	TNG TOP	onalised citations as per 0	2/2017		
	The second				
	2011	Ackermann M., Ajello M., Allafort A., et al.	11.7	The Second Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope	44
	2014	Planck Collaboration, Ade P. A. R., Aghanim N., et al.	11.3	Planck 2013 results. XXIX. The Planck catalogue of	
	2004	Santos N. C., Israelian G., Mayor M.	9.6	Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation	
1	2010	Abdo A. A., Ackermann M., Ajello M., et al.	8.5	The First Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope	
	2011	Burrows D. N., Kennea J. A., Ghisellini G., et al.	6.9	Relativistic jet activity from the tidal disruption of a star by a massive black hole	
	2009	Salvaterra R., Della Valle M., Campana S., et al.	6.6	GRB090423 at a redshift of z~8.1	
	2011	Levan A. J., Tanvir N. R., Cenko S. B., et al.	5.5	An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy	
2.49	2010		5.3	The Afterglows of Swift-era Gamma-ray Bursts. I. Comparing pre-Swift and Swift-era Long/Soft (Type II) GRB Optical Afterglows	-
	2015	Dressing C. D., Charbonneau D., Dumusque X., et al.	4.9	The Mass of Kepler-93b and Technological Planets	N
	2013	Inserra C., Smartt S. J., Jerkstrand A., et al.	4.8	Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail	

