DISCOS: A common control software for the SRT and the other Italian radio telescopes

Sergio Poppi
on behalf of the DISCOS team
DISCOS Team

- Carlo Migoni (INAF): core developer, VLBI integration.
- Andrea Orlati (INAF): team leader - project manager - core developer.
- Marco Buttu (INAF): core developer, test driven development.
- Marco Bartolini (INAF): core developer, continuous integration.
- Simona Righini (INAF): astronomical advisor, observations, documentation.
- Antonietta Fara (INAF): system administrator.
- Sergio Poppi (INAF): core developer, astronomical advisor, observations.
Project History

- **2004 Development SRT Control Software - NURAGHE started**
 - team: Giuseppe Maccaferri, Andrea Orlati, Francesco Palagi, Carlo Migoni, Matteo Murgia, Francesco Schillirò (GAI SOFTWARE - SRT)
- **Goal:**
 - Provide the Sardinia Radio Telescope of control software with enhanced performances.
 - Build a common infrastructure for the three radio telescopes.
- **2007 ESCS Enhanced Single-dish Control System (Medicina and Noto)**
 - team: GAI SOFTWARE + Simona Righini, Rashmi Verma, P.Libardi
- **2015 DISCOS: unifies the three development lines.**
Telescopes Configurations

<table>
<thead>
<tr>
<th></th>
<th>SRT</th>
<th>Medicina</th>
<th>Noto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main mirror</td>
<td>64 m</td>
<td>32 m</td>
<td>32 m</td>
</tr>
<tr>
<td>Optical configuration</td>
<td>Gregorian</td>
<td>Cassegrain</td>
<td>Cassegrain</td>
</tr>
<tr>
<td>Mount</td>
<td>Altazimuthal, fully steerable 12 motors + cable wrap</td>
<td>Altazimuthal, fully steerable 4 motors</td>
<td>Altazimuthal, fully steerable 4 motors</td>
</tr>
<tr>
<td>Antenna Control Unit (main servo system)</td>
<td>Beckhoff PLC ethernet vendor protocol</td>
<td>VxWorks based PC ethernet vendor protocol</td>
<td>VxWorks based PC ethernet vendor protocol</td>
</tr>
<tr>
<td>Primary Focus</td>
<td>three degrees of freedom INAF defined protocol</td>
<td>three degrees of freedom INAF defines protocol</td>
<td></td>
</tr>
<tr>
<td>Secondary Focus</td>
<td>six degrees of freedom ethernet INAF protocol</td>
<td>five degrees of freedom ethernet INAF protocol</td>
<td>five degrees of freedom RS232 vendor protocol</td>
</tr>
<tr>
<td>Active Surface</td>
<td>1008 aluminium panels 1116 actuators rs485/ethernet vendor protocol</td>
<td>not available</td>
<td>240 aluminium panels 244 actuators rs232 vendor protocol</td>
</tr>
</tbody>
</table>
Telescopes Configurations

<table>
<thead>
<tr>
<th></th>
<th>SRT</th>
<th>Medicina</th>
<th>Noto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main mirror</td>
<td>64 m</td>
<td>32 m</td>
<td>32 m</td>
</tr>
<tr>
<td>Receivers*</td>
<td>0.305-0.410</td>
<td>1.35-1.45</td>
<td>0.317-0.320</td>
</tr>
<tr>
<td></td>
<td>1.3-1.8</td>
<td>1.595-1.715</td>
<td>1.40-1.72</td>
</tr>
<tr>
<td></td>
<td>5.7-7.7</td>
<td>2.2-2.36</td>
<td>2.20-2.36</td>
</tr>
<tr>
<td></td>
<td>18.0-26.0, 7 feeds</td>
<td>4.30-5.80</td>
<td>4.70-5.05</td>
</tr>
<tr>
<td></td>
<td>GPIB and ethernet</td>
<td>5.90-7.10</td>
<td>8.18-8.58</td>
</tr>
<tr>
<td></td>
<td>INAF protocol</td>
<td>8.18-8.98</td>
<td>22.18-22.46</td>
</tr>
<tr>
<td></td>
<td>18.0-26.0, 2 feeds</td>
<td>GPIB and ethernet and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS232</td>
<td>various protocols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backends*</td>
<td>TotalPower (continuum)</td>
<td>0.1-2.1, 1-1000 ms, 14 inputs</td>
<td>0.1-2.1, 1 ms, 4 inputs</td>
</tr>
<tr>
<td></td>
<td>XARCOS</td>
<td>XARCOS</td>
<td>DBBC</td>
</tr>
<tr>
<td></td>
<td>(spectro-polarimetry)</td>
<td>(spectro-polarimetry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0005-0.125, 10 s, 2048 bins, 14 inputs</td>
<td>0.0005-0.125, 10 s, 2048 bins, 4 inputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roach(spectro-polarimetry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.512, 10-1000 ms, 8192 bins, up to 14 inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DFB3(pulsar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.024, 1-4000 ms, 8192 bins, 4 inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBBC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISCOS features

- Based on ALMA **Common** Software
 - Distributed objects architecture
 - ACS component as the basic unit which performs tasks
 - Components expose interfaces to other components.
- **Common** interfaces design for the three telescopes
- Components organised in subsystems
- Each subsystem has a “boss” component, which has in charge the communications inward and outward the subsystem
DISCOS implementation

- DISCOS - NURAGHE (SRT)
- DISCOS - ESCS (Medicina and Noto)

- A common monolithic codebase (77%):
 - management (scheduling, observing modes)
 - subsystem bosses
 - user interfaces
 - libraries

- Specific code coping differences among telescopes
How big is DISCOS?

Totals grouped by language (dominant language first):

<table>
<thead>
<tr>
<th>Language</th>
<th>Lines</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpp</td>
<td>383778</td>
<td>72.59%</td>
</tr>
<tr>
<td>xml</td>
<td>85988</td>
<td>16.26%</td>
</tr>
<tr>
<td>ansic</td>
<td>30854</td>
<td>5.84%</td>
</tr>
<tr>
<td>python</td>
<td>26607</td>
<td>5.03%</td>
</tr>
<tr>
<td>sh</td>
<td>1328</td>
<td>0.25%</td>
</tr>
<tr>
<td>fortran</td>
<td>144</td>
<td>0.03%</td>
</tr>
<tr>
<td>perl</td>
<td>14</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Total Physical Source Lines of Code (SLOC) = 528713

generated using David A. Wheeler's 'SLOCCount'.
statistics by www.openhub.net
What the control software must do?
It drives the telescope...

- The antenna control unit needs time tagged azimuth and elevation coordinates
 - The antenna subsystem computes t-tagged coordinates to perform scanning strategies:
 - Sidereal tracking
 - OTF in equatorial, horizontal, and galactic coordinate system
It set the receivers in the right focal position...

- The minor servo subsystem:
- Set the chosen receiver into its focal position
- Drives the subreflector tracking the best focus as the elevation changes
It allows the primary mirror to be in “good shape”

- The AS subsys set each of the 1116 actuators to its elongation for commanded elevation
It derotates multifeeds

- The Multifeed K-band receiver hosts an hardware derotator to follow the parallactic angle
- If needed, it rotates the receiver following the paralactic angle
Allows data acquisition with housekeeping infos!!!

- Data are acquired by digital backends (total power, ROACH2 based BE) at high sampling rate (10 ms or faster)
- Housekeeping ancillary infos are mandatory. For each sample there are
 - Data
 - Timestamp
 - Pointing coordinates
 - Weather parameters
 - Goodness of the sample (all the subsystem where working correctly?)
What if the sample rate is one sample every 1 ms?

Discos must continuously

1. Check that the telescope, at time t, is at the right position
2. Check each device, at time t, is at the right position
3. Save the acquired data each 1 ms, together with a status flag (1 if all the check are ok) together with the all the other HK parameters

- Synchronism is critical
Another Critical point: data rate!

- Totalpower BE produces MAX 64 KB/s
- SARDARA ROACH2 BE (16384) produces 128 MB/s (7-beam mode 900 MB/s)

The data rate is close to the disk rate limit

Optimizing disk and filesystem is mandatory!

Are we facing BIG DATA problems?
Sync it!

All the subsystem have high accuracy time reference (IRIG-B, 10 MHz, ntp)

ACS has a centralized time system. All the subsystem follow the manager pace

If something fails?

Error backtrace and centralized Logging allow to understand what’s happened (or could allow)
Maintenance pitfalls

- Big codebase
- Different product lines:
 - Medicina
 - SRT
 - Noto
- Development and testing during production (SRT)

Automatized tasks are needed!
Build the code...

Software repository based on svn

- Build Server AZDORA:
 - Completely automated setup of a virtual machine with ACS installed and configured along with all necessary dependencies
 - Jenkins installation for continuous integration
 - Already configured for accessing nuraghe-devel, mantis BT, github ready
 - Born for testing but can evolve into our standard management platform

Continuous integration
VM MANAGER
Vagrantfile hosted on github.com/discos/azdora

CentOS BOX
- OS Customization
- ACS Setup

Build Server
- Jenkins
 - Common Build & Test
 - SRT Build & Test
 - MED Build & Test
 - NOTO Build & Test
 - DISCOS Releases

Provisioning Scripts
- bash
 - users.sh yum.sh ...

Static Contents
- Provisioning
 - ACS.tar.gz qt.tar.gz

DISCOS Releases

Azdora WEB Interface
MANTIS BugTracker
developer's mailbox
Let’s go observing!
Questions?

See:

http://discos.readthedocs.org/
Medicina configuration

- cluster configuration, 4 real nodes, 2 VM nodes
 - 1 - system supervisor
 - 2 - system execution cores
 - 1 - user/project handling
 - 1 - general service (web/VM)
 - 1 - system gui/remote interface
- 1 Gbit private lan dedicated to nodes
- 1 Gbit private lan dedicated to telescope devices
- 10 Gbit lan dedicated to storage and data handling
- user/project management: NIS, NFS
- storage and housekeeping: GPFS -> Lustre
- remote interface: VNC
- virtualization: VirtualBox
- science operativity: IDL, Python
SRT Configuration

- 5 real server
- 1 system supervisor (mng)
- 1 active surface controller (as)
- 1 system gui console (obs1)
- 1 VM (lo)
- 1 user data reduction and QL (local user authentication) obs2
- 1 WS vnc login and data retrieving
- 1 Gbps lan general purpose
- nfs shared disk
- 18 TB mirrored storage
- Svn repository
- Science operativity: IDL, python,