Gaia and the large spectroscopic surveys: the New Milky Way

Sofia Randich Elena Franciosini, Laura Magrini, Elena Pancino, Germano Sacco INAF-Osservatorio Astrofisico di Arcetri

The big question

The Milky Way

stellar halo

thin disc

bulge

thick disc

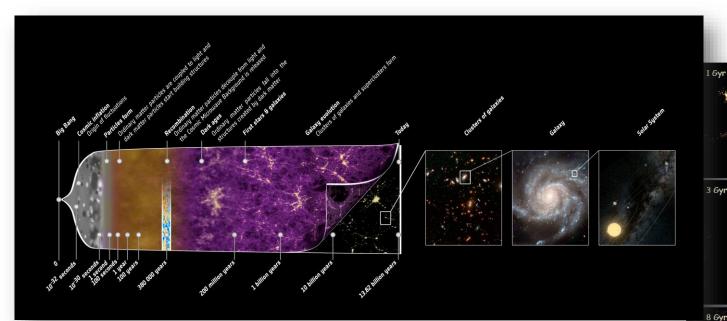
How did the Galaxy come to be like this?

What is the structure, origin/formation epoch/mechanism and relation between the various components?

The Milky Way is a Rosetta stone

stellar halo

thin disc

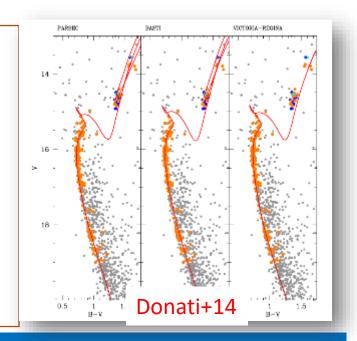

bulge

thick disc

We can observe individual stars and clusters and measure their properties

History of Cosmic structure formation

 $t = 4.5 \, Gv$


- observe distant galaxies at high redshifts, thus corresponding to various stages of their formation and evolution
- Galactic archeology

Galactic Archeology

- Stars are "fossils"
 - * Motions, ages, chemical composition trace their origin
 - * Substructures pinpoint to debris from accretion events
- Studies of the Milky Way: detailed view of physical processes in galaxy evolution

What is the (ideal) set of observables? p(r, v, M, L, T_{eff}, log g, [Fe/H], [X/Fe], age,....) most of these parameters are tightly correlated

- within a star: <u>stellar physics</u>
- among stars and clusters: <u>star</u> <u>formation, IMF, SFH, SFR,</u> <u>stellar evolution, galaxy</u> <u>evolution</u>

understanding galaxy formation and evolution requires -> understanding star and cluster formation and stellar physics

From one to several **big** questions

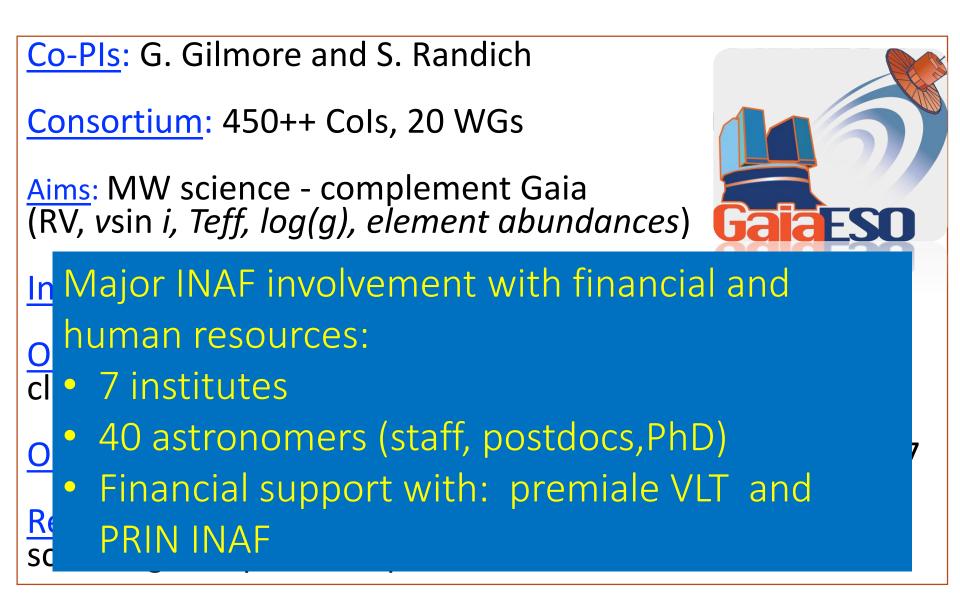
- How do <u>stars and clusters form</u> and dynamically <u>evolve</u> to populate the MW field?
- Can we put further constraints on <u>stellar</u> <u>physics</u> to safely use stars as <u>fossils</u> for the Galactic formation and evolution?
- What is the <u>shape of abundance gradients</u> and their <u>time evolution</u> in the MW and Local group galaxies?
- Can we really use <u>clusters to trace the</u> <u>assembly history</u> and evolution of the main Galactic components?

Present: the Gaia-ESO Public Survey

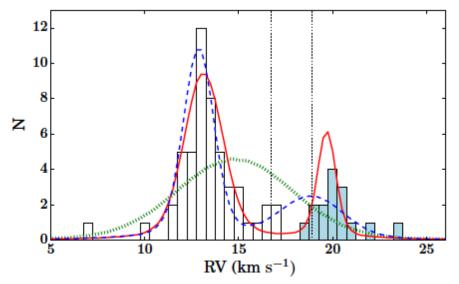
Co-Pls: G. Gilmore and S. Randich

Consortium: 450++ Cols, 20 WGs

<u>Aims</u>: MW science - complement Gaia (RV, vsin *i, Teff, log(g), element abundances*)


Instrument: FLAMES@VLT (UVES+GIRAFFE)

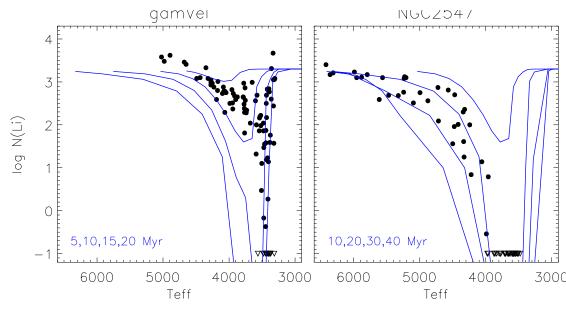
Observed sample: 10⁵ Galactic stars in the field and in clusters (covering the parameter space, x100 stars/cluster)


Observing Nights: 340 from December 2011 to Spring 2017

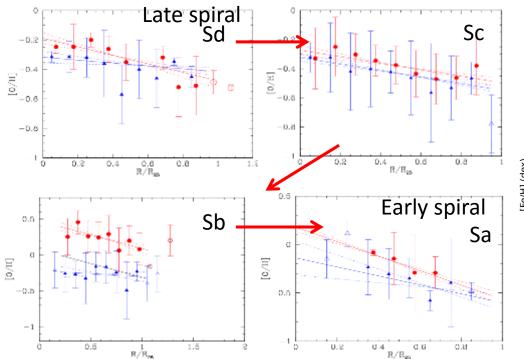
<u>Results:</u> 82 papers, ~50 refereed ones so far, original science goals, plus unexpected results

Present: the Gaia-ESO Public Survey

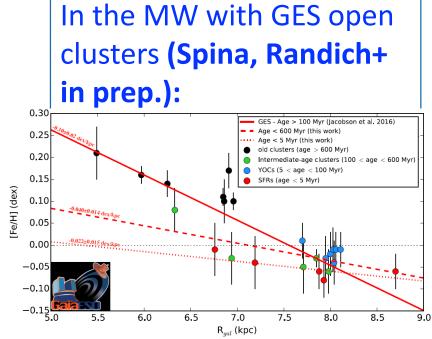
Present: cluster formation and stellar physics from GES



Dynamical analysis of star clusters by high precision radial velocities: new insights on cluster formation


Jeffries+14, Sacco+15, Rigliaco+15, Mapelli+15, Sacco+16

Constraints on PMS models of stellar interiors with lithium and stellar parameters: role of mag. field


Bouvier+16,Jackson+16, Jeffries+,Franciosini+ (in prep.)

Present: radial metallicity distributions in the MW from GES and in the external galaxies

Magrini+16: Time-evolution of the slopes of the gradients in nearby galaxies (HII regions and PNe) \rightarrow function of morphological type (and environment?)

Older clusters have higher [Fe/H] than the younger ones...difficult to reconcile with 'simple' chemical evolution models! Radial gas flows needed

The next 5 years

Gaia and the new large spectroscopic Instruments/Surveys; Completion of GES,WEAVE, 4MOST, MOONS

- The 6D domain for 1 billion stars! + chemistry and fundamental parameters for millions of stars a revolution in MW science
- From the local to the Galactic scale
- A more detailed view of the inner MW and embedded clusters
- Calibration of stellar models and stellar physics
- Age scale! \rightarrow Galactic and extra-galactic astrophysics

Is the Milky Way really a Rosetta Stone?

And

NGC 181

The next 10 years:

The E-ELT era

From Galactic archeology to galactic archeology

760

Les II

87.MG

Dra

From star [cluster] formation in the MW to Local Group galaxies

Lool

How to get there

→ Gaia + Large surveys (also with E-ELT)

- High precision, homogeneous spectroscopy
- Massive data processing, cross-calibration, synergy with e.g. asteroseismology, and appropriate spectrum analysis
- → Data mining and interpretation
 - Database and infrastructure
 - Statistical analysis and physical models
- \rightarrow Coordination of activities

The Gaia-ESO Survey – under the Arcetri coordination – helped creating a strong INAF community that is now collaborating effectively to address the big questions – let's keep the momentum!