Galactic archaeology from large asteroseismic surveys

Léo Girardi – OAPD

(With input from a lot of people, esp. The PRIN INAF 2014 team)

With

With

With

The most basic stellar parameters asteroseismology can tell us:

• Adopting homology relations from solar values:

This for thousands of single stars at tens of kpc !

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}, \qquad \text{mass}$$

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}, \qquad \text{radius}$$

$$T_{\text{eff}} \text{ and } R \Rightarrow L = 4\pi R^{2} T_{\text{eff}}^{4}; \qquad \text{(Teff from spectroscopy)}$$

$$L \text{ and } C_{B} \Rightarrow M_{\text{abs}}; \qquad \text{mand } M_{\text{abs}} \Rightarrow (m - M_{\text{abs}} - A_{V}) = 5 \log (d/10 \text{pc}). \qquad \text{distance}$$

Ensemble asteroseismology X Galactic models

But who cares about stellar masses?

• For giants, mass gives a **direct measure of** (main sequence) **age**

- Even for the noisiest Kepler/CoRoT targets, present age errors <30%, much smaller than any other method applied to single stars
- Complications (being solved): %-level deviations from scaling relations, mass loss
- Competing method, isochone fitting with Gaia parallaxes, will actually be calibrated with asteroseismic samples!

Ensemble asteroseismology of giants = Galactic Archaeology

CoRoT results

- Two fields have a simple selection function
- Easily simulated from chemo-dynamical models (Anders+16)

Evidence that inner disk stars migrated to Solar Neighborhood (Anders+15)

Alpha-enhanced young stars

Kepler field: ideal for z-structure

Kepler results

- Results depend on simulating a very complicated selection function
- Attempts to <u>measure</u> it (Hekker+13) impeded by Kepler's failure Nonetheless:

height relation from SAGA (Casagrande+16)

First quantitative tests on Milky Way star count models, now using age contraints (Sharma+16)

Kepler results

3.3 1.8 350 3.0 2.7 2.0 300 _____2.4 2.1 2 2.2 1.8 ⁻ $\log g ~({ m cm~s^{-2}})$ 250 (s)2.4 1.5 $\Delta \Pi_1$ 1.2 200 2.6 0.9 150 2.8 3.0 100 3.2 50 5.0 4.9 4.8 4.7 4.6 4.5 4.4 Ĝirardi 2016 10 16 20 8 6 $\Delta \nu \; (\mu \text{Hz})$ $T_{\rm eff} (10^3 {\rm K})$ 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 20 18 16 3D reddening b (deg) maps (Rodrigues+14) 12 10 A.,>0.8 80 75 70 85 l (deg)

APOKASC stunning views of red clump+SRC:

And many other exciting results:

Empirical [C/N] X age relation (Martig+16)

Kepler results

This is only the beginning:

- Homogeneous HR spectroscopy included ~20% of *Kepler* sample (it will be ~70% in next APOKASC catalog)
- Additional asteroseismic parameters will further decrease mass errors

Main international consortia

- **CoRoT** with Poretti, Montalban, ...
- KASC open group since ~2014, many Italians involved
- AsteroSTEP a "calibration effort for Galactic Archaeology", PI Andrea Miglio (includes Padova, Pisa, Roma, Bologna, Brera, Trieste people)

The asteroseismology + spectroscopy connection:

- SDSS/APOGEE + KASC (Kepler+K2) agreement → APOKASC, APOKASC-2, Padova (Girardi, Rodrigues, Moltalban) involved
- SDSS/APOGEE + COROT agreement → COROGEE (Montalban on Board)
- Gaia-ESO survey + COROT agreement (Montalban on Board + Zaggia, Momany)
- SAGA based on Stroemgren photometry, Teramo (Cassisi, Pietrinferni) involved

The nearby future: K2

Ongoing and working fine for asteroseismology (Stello et al., Miglio et al. 2016)

Fig. I.

Location in the Galaxy of stars with seismic constraints observed by CoRoT, Kepler and in the fields monitored by K2 (taken from Miglio et al. 2015)

The future

TESS:

- NASA mission, INAF does not count
 PLATO:
- INAF strongly involved (see tomorrow's talk)
- Asteroseismology is recognized as the basis for planetary systems characterization. Should include evolved stars since 1- they also contain planets, 2- strong contraints on MS evolution
- <u>But</u> number of giant targets still not written on paper! (hard to keep the interest of stellar people in this way)

Sinergies

- Gaia (next talk)
 - new parallaxes will reduce errors in asteroseismic R and hence in ages by <50%,
 - proper motions will add new interesting correlations
 - more importantly: asteroseismic samples will provide <u>the most robust calibrators</u> for Gaia-derived ages!
- LSST, Euclid, WFIRST: precise photometry and astrometry at faint limits, with indirect inference of ages, metallicities and distances – relations calibrated with asteroseismic samples will then be applied overall across the Galaxy

Survey	Area (deg²)	Depth (5-sigma, AB)	
UKIDSS-LAS	4000	Ks=20.3	
VISTA-VHS	20,000	H=20.6	
VISTA-VIKING	1500	H=21.5	ΠΟΨ
VISTA-VIDEO	12	H=24.0	
Euclid, wide (5 yr.)	15,000	H=24.0	2020-2024
WFIRST, deep (1 yr.)	2700	F3=25.9	2024
WFIRST, wide (1 yr.)	(4730)	F3 = 25.3-25.5	2024
LSST-deep-wide-fast (10yr)	18000	r~27.5	2022-2032

A future in INAF?

- Ensemble asteroseismology is <u>ground-breaking science</u> unknown and unforeseen 10 years ago, when the goal was just to find planets
- Many foreign institutes/observatories reacted quickly, hiring and starting follow-up surveys. Got at least two ERC grants.

And INAF? This is **NOT** the kind of thing that appears among "INAF Big Projects"

- Main actors in this field have PhDs between 2000 and 2010, including some Italians abroad (Miglio, Casagrande). Was Italy any attractive to them? Will we also miss the next generation?
- Fertile ground for development in present stellar evolution groups, <u>if</u> <u>funded</u>. Any hope?