

GAPS

S. Desidera & GAPS Team

Meeting Title
Place

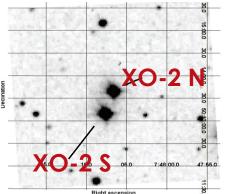
Global Architecture of Planetary Systems

- Collaboration among many Italian scientists working in the exoplanetary field
- Supported by Premiale WOW
- Asked and obtained a long-term multi-purpose observing program
- ☐ Method: Radial Velocities
- Instrument: HARPS-N@TNG
- Aims: Characterization of the architectural properties of planetary systems

More than 60 people from INAF Observatories & Universities

GAPS facts

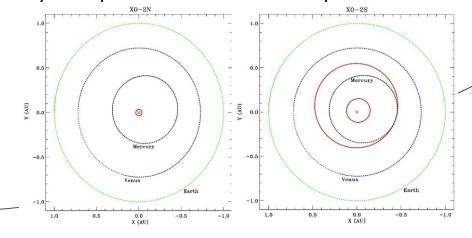
Objectives:


- ☐ **Frequency** of exoplanets around *M* stars, metal poor stars, stars in open clusters
- Search for additional low mass companions in stars with known planets
- □ Characterization through Rossiter-McLaughlin effect and Asteroseismology/SPI (star-planet interaction) and orbital refinement of known systems

- □ ~2500 allocated hours
- □ > 6500 spectra
- \square ~ 250 targets
- ☐ 13 accepted papers, 1submitted, many others in preparation or close to the submission

ected and retrieved 13 abstracts.										
Bibcode Authors	Score Title	Date	of Links ess Cont		2					
© 2016A&A., 588A.118M Malwolta, L.; Nascimbeni, V.; Piotto, G.; Quinn, S. N.; Borsato, L.; Granata, V.; Bonomo, A. S.; Marzari, F.; Bedin, L. R.; Rainer, M.; and 38 counthers	1.000 The GAPS peogr	04/2016 ramme with HARPS-N at T	E E	X 14: the fi	<u>D</u> irst multi		ystem	U in an open cluster		
U 2015A.R.A. SSSA.115B Biazzo, K.; Gratton, R.; Desidera, S.; Lucatello, S.; Sozzetti, A.; Bonomo, A. S.; Damasso, M.; Gardolf, D.; Affer, L.; Boccato, C.; and 19 countries	1.000 The GAPS peogr	11/2015 ramme with HARPS-N at T	E E ential abu	<u>X</u> indancer		<u>R</u> <u>C</u> (O-2 plan		Q U ting binary		
© 2015ApJ. 811L. 2M Maggio, A.; Pillitteri, I.; Scardariato, G.; Lanza, A. F.; Sciortino, S.; Borsa, F.; Bonomo, A. S.; Claudi, R.; Covino, E.; Desidera, S.; and 7 courthors	1.000 Coordinated X-R	09/2015 Ray and Optical Observation	E F et Interac	X tion in I		R C	<u>s</u>	Ü		
<u>2015A&A., S81L., 6D</u> Darnasos, M.; Esposibo, M.; Nascimbeni, V.; Desidera, S.; Bonemo, A. S.; Bieryla, A.; Malavolta, L.; Biazzo, K.; Sozzetti, A.; Covino, E.; and 32 coauthors	1.000 The GAPS peogr	09/2015 ramme with HARPS-N at T	E F nulti-plan	X set syste	m KELT	R C 6: Detec		U f the planet KELT-6 c and measurem	nent of the Rossiter-McLaughlin effect for Kill	Г6Ъ
□ 2015A&A., 579A.136M Mazcini, I.; Esposito, M.; Corrino, E.; Raiss, G.; Southworth, J.; Tregloan-Reed, J.; Blazzo, K.; Bonomo, A. S.; Desidera, S.; Lanza, A. F.; and 29 cuauthers	1.000 The GAPS Progr	07/2015 ramme with HARPS-N at T	E F ervations	X of the l		R C McLaugi		© U fect and characterisation of the trans	iting planetary systems HAT-P-36 and WASP-1	I/HAT-P-1
U 2015A&A., 578A, 64B Borsa, F.; Scanduristo, G.; Rainer, M.; Bignamini, A.; Maggio, A.; Pocetti, E.; Lanza, A. F.; Di Mauro, M. P.; Benatti, S.; Biazzo, K.; and 27 courthors	1.000 The GAPS peogr	06/2015 ramme with HARPS-N at T			<u>D</u> the stella			Q U netic activity and asteroseismology of	of t Bootis A	
□ 2015A&A., 577A.132M Maldonado, J.; Affer, L.; Micela, G.; Scandariato, G.; Damasso, M.; Stelzer, B.; Barbieri, M.; Bodin, L. R.; Biazzo, K.; Bigramini, A.; and 22 courthess	1.000 Stellar parameter	05/2015 rs of early-M dwarfs from r	E F al feature	X s at opti		R C	<u>s</u>	ŌΠ		
© 2015A&A. 575L158 Sozzetti, A.; Bonomo, A. S.; Biazzo, K.; Mancini, L.; Darnasso, M.; Desidera, S.; Gratton, R.; Lanza, A. F.; Poretti, E.; Rainer, M.; and Jl. coauthors	1.000 The GAPS progr	03/2015 ramme with HARPS-N at T	E F urious ca			RC	<u>s</u>	ŌΠ		
© 2015A&A. 575A.111D Damasso, M.; Biazzo, K.; Bonomo, A. S.; Desidera, S.; Lanza, A. F.; Nascimbeni, V.; Esposito, M.; Scandariato, G.; Sozzetti, A.; Cosentino, R.; and 49 courthors	1.000 The GAPS progr	03/2015 ramme with HARPS-N at T	E F prebezsir		<u>D</u> sis of the			© ∐ nd planetary systems		
□ 2014A&A., 567L., 6D Desiders, S.; Bosomo, A. S.; Claudi, R. U.; Damasso, M.; Biazzo, K.; Sozzetti, A.; Mazzari, F.; Beratti, S.; Gardelli, D.; Gratton, R.; and 41 coauthors	1.000 The GAPS progr	07/2014 ramme with HARPS-N at T	E E			<u>R</u> <u>C</u> -2S	<u>s</u>	συ		
2014A&A., 564L.13E Esposito, M.; Covino, E.; Mancisi, L.; Harutyueyan, A.; Southworth, I.; Biazzo, K.; Gandelfi, D.; Lanzu, A. F.; Barbieri, M.; Bonomo, A. S.; and 15 counthers	1.000 The GAPS Progr	04/2014 ramme with HARPS-N at T	E E etrograde	X orbit of		<u>R</u> ⊆	<u>s</u>	ŌΠ		
© 2013A&A., 554A., 29D Desiders, S.; Sozzetti, A.; Bonomo, A. S.; Gratton, R.; Poretti, E.; Claudi, R.; Luthum, D. W.; Affer, L.; Cosentino, R.; Durnasso, M.; and 30 coauthors	1.000 The GAPS peogr	06/2013 ramme with HARPS-N at T	E E nt planet	X s around		R C		<u>о</u> <u>U</u> Р 11952		
U 2013A&A., 554A., 28C Covino, B.; Esposito, M.; Barbieri, M.; Mancini, L.; Nascimbezi, V.; Claudi, R.; Desidera, S.; Gratten, R.; Lasra, A. F.; Sozzetti, A.; and 60 countbers	1.000 The GAPS progr	06/2013 ramme with HARPS-N at T	E E	X the Ros		R C Laughlin		Q U and characterisation of the transiting	g system Qutar-1	

Planet detections: XO-2 S b & c

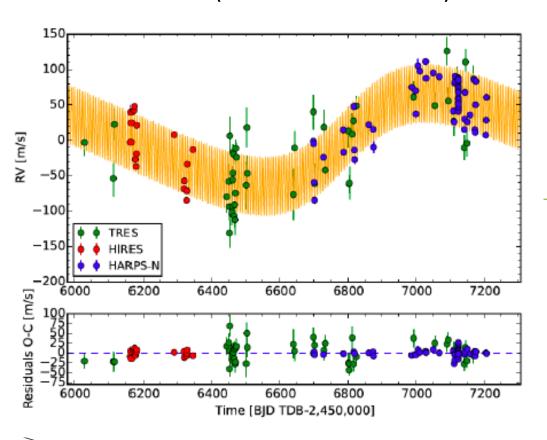

Burke et al. 2007: Hot Jupiter transiting XO-2 N Desidera et al. 2014: 2 planets around XO-2S First case of binary system on which both

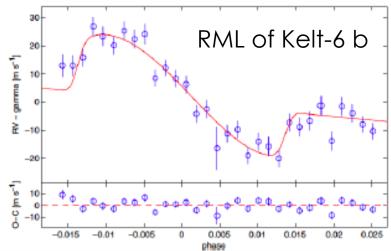
First case of binary system on which both components host planets

EV (m/s) 0 -20	- Right	ascension			
Res. (m/s)	6400	6500	6600	6700	6800

	XO-2 Sb	XO-2 Sc
P [d]	18.157	120.80
m sini $[M_J]$	0.259	1.370
е	0.180	0.153

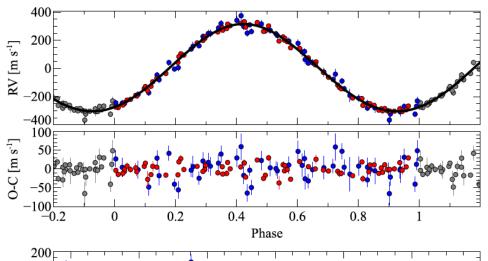
Laboratory for planet formation process:


Abundance difference between the components

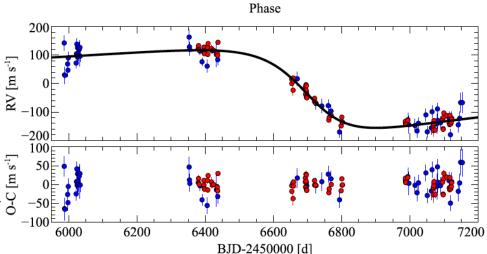

Damasso et al 2015, Biazzo et al. 2015

Planet detections: Kelt-6 c

Kelt-6 b, Saturn-mass planet orbiting a late-F star (Collins et al. 2014)

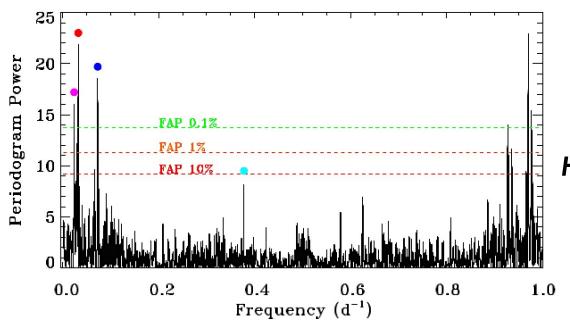

	Kelt-6 b	Kelt-6 c
Period	7.8 d	1276 ± 74 d
Mass	0.44 M _J	3.7 M _J
е	0.03	0.2
λ	-36 ± 11	-

Damasso et al. 2015



First planetary system in OC (Malavolta et al. 2016)

70 HARPS-N + 36 TRES observations of the known Hot Jupiter around Pr 0211 (Quinn et al. 2012), additional photometric observations (STELLA)


Parameter	Pr0211b	Pr0211c	unit
P	$2.14609 \pm 2 \cdot 10^{-5}$	4364^{+3237}_{-1327}	days
K	309.7 ± 2.5	136 ± 4	$\mathrm{m}\;\mathrm{s}^{-1}$
ϕ	153.0 ± 0.4	259 ± 4	deg
$\sqrt{e}\sin\omega$	-0.03 ± 0.06	0.79 ± 0.07	
$\sqrt{e}\cos\omega$	$0.12^{+0.04}_{-0.06}$	-0.17 ± 0.08	
e	0.019 ± 0.009	0.65 ± 0.11	
ω	344 ± 28	103 ± 6	deg
$M_p \sin i$	1.91 ± 0.02	8.1 ± 0.2	M_{jup}
a	0.03210 ± 0.00009	$5.2^{+2.3}_{-1.1}$	AU

- HJ in nearly circular orbit
- Long period Jupiter in high eccentricity orbit
- Activity in this target stronger with respect to other M44 targets
- Other 4 planet candidates in M44 (Malavolta et al. in preparation)

GAPS

Planet detections: GJ 3998 b & c

Super Earths system around an M dwarf

Affer et al. submitted

HADES (HArps-n red Dwarf Exoplanet Survey): GAPS + ICE + IAC

 \square P = 30.7 d: rotational period of the star

□ P = 42.5 d: modulation of the stellar variability due to differential rotation

P = 2.6 d: orbital period of GJ 3998b

☐ P = 13.7 d: orbital period of GJ 3998c

Msini ~ 2.5 M_{Earth}

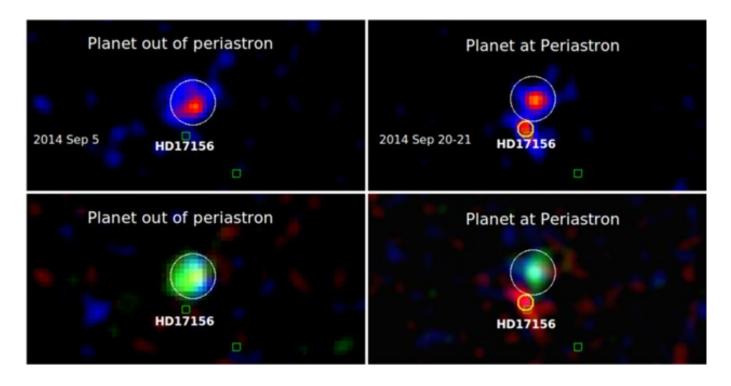
P = 2.6 d

e = 0

K = 1.8 m/s

Msini ~ 6 M_{Earth}

P = 13.7d


e = 0.06

K = 2.7 m/s

Mondello Workshop 2016

Star-planet interaction in a highly eccentric planetary system

Strong increase in X-ray luminosity and chromospheric emission close to periastron passage of the planet around HD 17156 in a highly eccentric orbit

System characterization and other results

- □ Rossiter-McLaughlin effect: Covino et al. 2013, Esposito et al. 2014, Damasso et al. 2015, Mancini et al. 2015, Damasso et al. 2015, Esposito et al. in prep.
- ☐ Planet rejection: **Desidera et al. 2013**
- ☐ Major refinements for Tres-4: **Sozzetti et al. 2015**
- ☐ Stellar parameters of early-M dwarfs **Maldondo et al. 2015**
- □ Asteroseismology of T Boo: Borsa et al. 2015
- ☐ Characterization of HD 108874: **Benatti et al. in prep**
- □ Structure and evolution of transiting giant planets: **Bonomo** et al. in prep.

Lessons learned

- Coordinated work in a national community worked fine
- RV planet searches need a lot of time especially when looking to low-mass planets (about 100 obs/star needed)
- The role of stellar activity in hiding or mimiking planets: rely on specific expertise in Italian community ("traditional" stellar science work)

Perspectives

- Relevance of experiments tailored to test key aspects of planet formation and evolution
- Increasing role of planet characterization
- Lessons from previous planet discovery efforts:
 many, many, surprises and unexpected discoveries
- Exoplanet science well-placed in MA2 but synergies with Solar System community to be exploited (in progress within WOW framework) (and of course with MA5 for technological projects)

Perspectives for GAPS

- Exploit instrumentation uniquely available:
 GIARPS unique tool for planet detection (for specific type of stars) and characterization
- Exploit synergies with other projects on which we have significant participation (SPHERE, GAIA, CHEOPS, on longer term PLATO, ARIEL, etc)
- Increase synergies with HARPS-N Consortium (currently two high-merit targets monitored jointly + time exchanges when needed for optimal scheduling of planet candidates)
- Agreement INAF-HARPS-N Consortium ending May 2017; of course interest of GAPS team in keeping HARPS-N at TNG