Jet – Disk interaction : a key element in star and planet formation

Francesca Bacciotti Luca Moscadelli INAF – OAA

INAF collaborators:

C. Codella, L. Podio, S. Antoniucci, L. Testi, B.Nisini, T. Giannini, D. Galli, M. Padovani, and the JEDI team

Convegno MA2 – Bologna 16/06/2016

Jets : pretty pictures

550 FR 21640-40099 (17 Sovember 1999)

Importance of jets / outflows

Dispersion of parental envelope

Injection of turbulence in cloud

Shock chemistry lab

Importance of jets / outflows

Dispersion of parental envelope

Injection of turbulence in cloud

Shock chemistry lab

Same MHD launch mechanism at all mass scales (AGN \rightarrow BDs)

Removal of excess angular momentum allows accretion

Feedback on the disk

the big questions

Do all disks have jets at some stage ?

Do jets drive the cloud SFR?

How can we test the magnetocentrifugal launch theory ?

> Do jets influence the process of planet formation ? How ?

the big questions

Do all disks have jets at some stage ?

Do jets drive the cloud SFR?

How can we test the magnetocentrifugal launch theory ?

> Do jets influence the process of planet formation ? How ?

OBSERVATIONALLY:

YSO jets are bright, close, emit lines at all wav, ideal targets for AO

Scientific perspectives

HAR SPECTRAL DIAGNOSTICS

HST STIS, DG Tau jet, Bacciotti et al. 2000

→2D maps of lines in different velocity intervals→physical conditions of the gas from line ratio maps

 \rightarrow Channel maps of phys quantities

reconstructed 2D images of jets in optical lines (e.g. [SII], Ha, [OI]) provide info on the excitation structure.

HST STIS, DG Tau jet, Maurri et al. 2014

HAR SPECTRAL DIAGNOSTICS

HST STIS, DG Tau jet, Maurri et al. 2014

investigations on the jet launch mechanism

investigations on the jet launch mechanism

instrumental perspectives

Present :
VLT/ SPHERE
LBT/ LUCI-AO
HST, ALMA

JET EVOLUTION : faint embedded sources

SENSITIVITY at NIR / MIR

Imaging the launch region

HIGH CONTRAST : LBT SHARK

Jet diagnostics close to the souce

NEED FOR : SPECTRAL RESOLUTION + ANGULAR RESOLUTION

To find the magnetic architecture

MAGNETIC FIELD DISTRIBUTION MAGNETIC FIELD AMPLITUDE

NEED FOR : POLARIZATION MEASUREMENTS

ALMA: Magnetic field at the jet base

ALMA Cycle 3 proposal accepted (Pi Bacciotti) to observe distribution of magnetic field from polarization of dust continuum

Targets : DG TAU and CW Tau With jet/disk rotation agreement

CARMA Obervations - HL TAU

Simulation of ALMA results with DUSTPOL for CW Tau

The inner 100 AU of a Sun-like protostar, as seen by ALMA

HH212 as observed with ALMA (Band 7) Cavity Jet -1°02'51'' (J2000) Hot SiO(8-7)Envelope 0.9mm corino continuum СН₄ОН CO(3-2)-1°02'54'' $(7_{1,7} - 6_{1,6})$ 3 C¹⁷O(3-2) Outflow 1000 AU 5(5- $-1^{\circ}02'57$ 5^h43^m51.^s6 51.[°]3 $5^{h}43^{m}51.6$ 51.[°]3 5^h43^m51.^s6 51.[°]3 α (J2000) α (J2000)

All the ingredients of the Sun-like star formation recipe imaged with a single spectral set-up:

- 1. The flattened (dust & molecules) envelope
- 2. The hot-corino (COMs) heated by the protostar
- 3. The forming disk
- 4. The hot and fast collimated jet
- 5. The cold, slow, and extended swept-up outflow
- 6. The cavity as interface between outflow and static cloud

Codella et al. (2014, 2016), Podio et al. (2015)

First Band 9 image of a protostellar jet, in CO(6-5) !!

JETS and JWST

James Webb Space Telescope

- 6.5m Diameter Segmented Primary Mirror
- Infrared Optimized Telescope
- Passively Cooled to ~ 40K
- MIRI Cooled to 7K (PT+JT)

Angular resolution like HST in the VIS: 0."1 at 1 micron

Sensitivity 10 – 100 times Spitzer

- Launch October 2018
- · Will be placed in an L2 orbit
- Mission Lifetime ~ 10 years

2,4 m

Our project:

Jets in NIR/ MIR lines In embedded faint sources in Defined SF regions

Mapping – Statistical census

But too low spectr res for internal kinematics

James Webb Spitzer 0,85 m

6,5 m

E-ELT HIRES

Probe excitation and dynamics of winds/jets

 test different jet launching models from observations of the kinematic components

 use large number of lines to probe different excitation layers in the jet

 jet acceleration/collimation within 10-100 AU (~70-700 mas at 150 pc), AO critical

Forbidden lines in X-shooter spectrum of ESO-Ha 574 Giannini+ 2014

PROPER JET ROTATION studies !!!!!!!!

Jet in VIS / NIR lines close to the source

At last, high angular res + high spectral resolution in VIS and IR

HIRES meeting 15 June 2015 - S. Antoniucci

Strong participation of JEDI to the Italian science team

Conclusions part I : the main drivers

Conclusions part I : the main drivers

Find the freque At diffe to quantify t	erent ages / masses their role in star formation	ensitivity ST, ALMA
Find the To cla of	KEEP JEDI COMMUNITY STRONG KEEP CONTACT WITH THEORY POSITIONS FOR YOUNG RESEARCHERS FUNDING FOR INTERNATIONAL PROGRAMMES	ation SKA,
Find physica the s	al properties of jets at smallest scales High spati High spect	ntrast ial resol iral resol

To clarify the influence on planet formation

HST **LBT, SPHERE** EELT

Molecular masers: a formidable tool for SF study

Talk outline:

- 1) BeSSeL: structure and dynamics of the Galactic disk
- 2) 3-D Velocity and Magnetic Fields at radii of 100 AU
- 3) Near Future: SKA

Main collaborators:

INAF: Bacciotti, F., Beltrán, M.T., Cesaroni, R., Massi, F., Olmi, L., Surcis, G.

non-INAF: Goddi, C., Sánchez-Monge, Á., Sanna, A., Reid, M. J.

Maser spots are excellent astrometric targets : > 100 trigonometric parallaxes (~5 % accuracy up to 10 kpc) and proper motions (a few km/s accuracy)

Maser VLBI: 3-D Kinematics @ ~10² AU in G23.01-0.41

Several Molecular Masers commonly observed nearby high-mass YSOs Maser V_{LSR} + Proper Motions \rightarrow 3-D kinematics

Rotation and Expansion @ ~10² AU from the YSO

DECLINATION (J2000)

9°00'38'5

Rotation and Expansion @ ~10² AU from the YSO

EVN 6.7 GHz maser linear polarization in G23.01-0.41

Sanna et al. 2015, A&A, 583, L3

EVN 6.7 GHz maser linear polarization in G23.01-0.41

EVN 6.7 GHz maser linear polarization in G23.01-0.41

Gas flows along **B** lines?

3-D B field from maser linear + circular polarization

To summarize:

Molecular masers are unique tool:

to derive 3-D motion and 3-D B-field
@ 10-1000 AU from the YSO.

2) to study the dynamics of the Galactic disk.

Their main drawback is the non-uniform sampling: SKA with its superb sensitivity will "populate" YSOs' jet and disk of maser emissions.

(sub)mm VLBI of molecular masers [> 2016]

Observed Class II methanol masers

Rest	Transition
Frequency	
6.7	51-60 A+
12.2	$2_0 - 3_{-1} E$
20.0	$2_1 - 3_0 E$
23.1	92-101 A ⁺
29.0	82-91 A ⁻
37.7	$7_{-2}-8_{-1}E$
38.3/38.5	$6_2 - 5_3 A^- / A^+$
85.6	$6_{-2}-7_{-1}$ E
86.6/86.9	$7_2-6_3 A^-/A^+$
107.0	31-40 A+
108.9	$0_0 - 1_{-1} E$
148.1	$15_0 - 15_{-1} E$
156.6	21-30 A+
157.3	$J_0 - J_{-1} \to \text{group}$
165.0	$J_1 - J_0 \to \text{group}$
231.3	102-93 A ⁻

Observed water masers

Freq. (GHz)	$\begin{array}{c} \text{Transition} \\ \mathbf{J}_{k_a,k_c} \text{-} \mathbf{J}_{k_a,k_c} \end{array}$
22.235 96.261	$6_{16} - 5_{23}$ $4_{40} - 5_{33}$
183.308	$3_{13} - 2_{20}$
232.687	$5_{50} - 6_{43}$
293.439	$6_{61} - 7_{52}$
321.226	$10_{29} - 9_{36}$
325.153	5_{15} - 4_{22}
³ 336.228	$5_{23} - 6_{16}$
354.885	$17_{412} - 16_{710}$
380.194	4_{14} - 3_{21}
437.347	7 ₅₃ - 6 ₆₀
439.151	6_{43} - 5_{50}
470.889	6_{42} - 5_{51}
658.007	$1_{10} - 1_{01}$

RIGHT ASCENSION (J2000)

Sanna et al. 2010, A&A, 517, A78

RIGHT ASCENSION (J2000)

Simulation of protostellar velocity and magnetic fields

CH₃OH & H₂O maser 3-D Velocity & Magnetic Field

Large Program @ EVN

to be completed in 5 years

From circular polarization measurements

(Zeeman splitting) we derive the value of B

Table 1: List of Targets (ordered for increasing L_{bol}) and Status of the Observations.

Source	RA	DEC	L_{bol}	CH ₃ OH	H_2O	CH ₃ OH	H_2O	GST-time
name				Flux	Flux	P.M., Pol.	P.M., Pol.	
	(hh:mm:ss)	(dd:mm:ss)	L_{\odot}	(Jy)	(Jy)			hours
G35.20 - 0.74	18:58:12.980	+01:40:37.50	$1.6 \cdot 10^{3}$	200	16	Ν, Υ	Ν, Υ	13 - 22
G111.25 - 0.77	23:16:10.331	+59:55:28.63	$5 \cdot 10^3$	8	30	N, N	Υ, Ν	17 - 02
G012.68 - 0.18	18:13:54.750	-18:01:46.57	$5.7 \cdot 10^{3}$	300	144	N, N	Υ, Ν	13 - 22
Sh 2–255 IR	06:12:54.018	+17:59:23.12	$9 \cdot 10^3$	60	50	Υ, Υ	Υ, Ν	01 - 10
IRAS 18264–1152	18:29:14.360	-11:50:22.50	$1 \cdot 10^4$	4	50	N, N	N, N	13 - 22
G016.58 - 0.05	18:21:09.125	-14:31:48.65	$1.3\cdot 10^4$	18	24	Υ, Ν	Υ, Ν	13 - 22
G37.43 + 1.51	18:54:14.229	+04:41:41.14	$1.3 \cdot 10^4$	349	110	Ν, Υ	Υ, Ν	13 - 22
G213.70 - 12.6	06:07:47.860	-06:22:56.63	$1.4 \cdot 10^{4}$	147	100	Ν, Υ	N, N	01 - 10
$G075.76{+}0.34$	20:21:41.094	+37:25:29.19	$1.4\cdot 10^4$	39	21	N, N	Υ, Ν	16 - 01
G69.52 - 0.97	20:10:09.070	+31:31:34.40	$1.6 \cdot 10^4$	96	150	Υ, Υ	Υ, Ν	16 - 01
G29.95 - 0.02	18:46:03.740	-02:39:22.33	$1.8 \cdot 10^{4}$	169	63	Ν, Υ	N, N	13 - 22
G35.02 + 0.35	18:54:00.660	+02:01:18.55	$2.8 \cdot 10^4$	26	20	Ν, Υ	Υ, Ν	13 - 22
G24.78 + 0.08	18:36:12.556	-07:12:10.80	$4 \cdot 10^4$	81	76	Υ, Υ	Y, N	13 - 22
G25.65 + 1.05	18:34:20.900	-05:59:42.10	$4.4 \cdot 10^{4}$	102	453	Ν, Υ	N, N	13 - 22
G43.80 - 0.13	19:11:53.990	+09:35:50.30	$5 \cdot 10^4$	40	232	Ν, Υ	N, N	13 - 22
G23.01 - 0.41	18:34:40.390	-09:00:38.50	$1 \cdot 10^{5}$	150	200	Υ, Υ	Y, N	13-22
G31.28 + 0.06	18:48:12.390	-01:26:22.60	$1.2 \cdot 10^{5}$	74	150	Ν, Υ	N, N	13 - 22
G25.83 - 0.18	18:39:03.630	-06:24:11.20	$\leq 1.5\cdot 10^5$	59	453	Ν, Υ	N, N	13 - 22
G31.41 + 0.31	18:47:34.314	-01:12:45.80	$3 \cdot 10^5$	10	108	Y, N	Υ, Ν	13 - 22
G45.07 + 0.13	19:13:22.043	+10:50:53.34	$3.5\cdot 10^5$	33	12	N, N	Υ, Ν	13 - 22

EVLA / BeSSeL Survey of massive outflows

Hint at Jet Rotation in G92.69+3.08

EVLA continuum: 6 GHz and 22 GHz

Physics / kinematics in the maser surroundings (on-going – planned observations)

NIR and MIR (Large-Class Telescopes) Observations of less-extincted Objects:

Continuum 🔿 (sub)arcsecond structure of outflow cavity

NIR H, and [Fell] Lines \rightarrow (sub)arcsecond jet structure

mm Interferometers (ALMA, SMA, PdBI) Observations of thermal tracers:

¹²CO, ¹³CO, CH₂OH and SiO Lines \rightarrow Water Maser Jet \leftrightarrow Molecular Outflow

Dust Continuum and High-Density (NH_2, CH_2CN) Lines \rightarrow Molecular Core