

OPEN AND GLOBULAR CLUSTERS

Angela Bragaglia - INAF OA Bologna

OPEN CLUSTERS science case

ITALY										
INAF+	UCT									

A. Vallenari (Proj. Exec, nat. PI)
A. Bragaglia
A. Frasca
A. Lanzafame
L. Magrini
S. Randich
R. Sordo

et al.

SPAIN *LAC+UB*

E. Alfaro C. Allende Prieto A. Aparicio L. Balaguer R. Carrera L. Casamiquela C. Gallart C. Jordi M. Monelli et al

OPEN CLUSTERS science case

Core science cases

- 1- Formation of open clusters
- 2- Disruption of open clusters
- 3- Open cluster as tracers of the MW disc and its chemical evolution
- 4- Star formation and early stellar evolution
- 5- Stellar evolution

For all : HR required, R=20000

OPEN CLUSTERS science case Core science cases

1- Formation of open clusters

- Dynamical properties (RV + UVW) as function of age, metallicity, position Two SF regions : Great Cygnus Rift, Per OB1 with 20+ clusters
- 2- Disruption of open clusters
- **3- Open cluster as tracers of the MW disc and its chemical evolution**
- 4- Star formation and early stellar evolution
- 5- Stellar evolution

OPEN CLUSTERS science case Core science cases

1- Formation of open clusters

2- Disruption of open clusters

- Large sample, different age and Rgc to probe dependencies
- Uses same clusters of goals 3, 4
- **3- Open cluster as tracers of the MW disc and its chemical evolution**
- 4- Star formation and early stellar evolution
- 5- Stellar evolution

OPEN CLUSTERS science case Core science cases

- 1- Formation of open clusters
- 2- Disruption of open clusters
- **3- Open cluster as tracers of the MW disc and its chemical evolution**

Large sample of clusters at all Rgc, at all [Fe/H], with age>100 Myr

Derive [Fe/H], detailed abundances, combine with

homogeneous distances and ages

- 4- Star formation and early stellar evolution
- 5- Stellar evolution

OPEN CLUSTERS science case Core science cases

- 1- Formation of open clusters
- 2- Disruption of open clusters
- **3- Open cluster as tracers of the MW disc and its chemical evolution**
- 4- Star formation and early stellar evolution
 - Clusters with age < 500 Myr, cool stars to measure [Fe/H], Li, mass accretion rate, chromospheric activity (see FRASCA)
- 5- Stellar evolution

OPEN CLUSTERS science case Core science cases

- 1- Formation of open clusters
- 2- Disruption of open clusters
- **3- Open cluster as tracers of the MW disc and its chemical evolution**
- 4- Star formation and early stellar evolution
- 5- Stellar evolution
 - Test stellar evolution models with clusters. Same target list of goals 3 & 4

OCs and the MW disc

10

OCs and the MW disc

OCs and the MW disc ightarrow Age \geq 3-500 Myr → red clump Observe cluster central region & external \succ Sample also in |Z|> Sample as far as Vlim permits >10 stars (small) & some $\times 100$ (large ang. size) > Include all possible very old (some Gyr) > Sample anticentre

Synergy with field disc survey – TBD include also small clusters

OCs and the MW disc

Preliminary selection of a- clusters b- target stars Simulation of fibre allocation

Positions, photometry, membership updated with Gaia DR2

Alessi2 8 10 \geq 12

OCs and the MW disc

5

OCs and the MW disc

Other surveys - complementarity

courtesy S. Randich

Other surveys - complementarity

APOGEE- OCCAM

(only giants, only few stars/cl no Li no n-capture?)

WEAVE Goal #3 (giants/dwarfs 10-100 stars/cl)

Target clusters selection

For each goal : selected list of clusters

Essential set
Optimal set
Ideal set

plus calibrators

WL regions : blue arm: 473 - 545 nm red arm: 595 - 685 nm

Exposure times : 3x1hr : SNR>70 in red arm

Target clusters selection

Target stars allocation

- Young & very young (nearby)
- Old(er) & sparse
- Old & concentrated
- More than 1 cluster in 1 WEAVE field (studied multiplicity of selected clusters)

Used e.g. 2MASS, APASS (**WEAVE will have Gaia**) Run *configure* v1.0 Checked fibre allocation effectiveness

20

Target stars allocation : easy case

Target stars allocation : difficult case

Calibrating clusters

SURVEY calibrators (Gaia Benchmark stars, Kepler/CoRoT fields, a few open and globular clusters) – TBD

Intra-survey : well studied OCs range of metallicity range of distances/ages (giants vs dwarfs)

Test of parameters : Kepler, K-2 clusters (log g)

Inter-surveys : APOGEE Gaia-ESO

Calibrating clusters

Data products

Defined by Advanced Processing System (APS): RV, atmospheric parameters, metallicity + Si, Ca, V, Fe, Ni (only FGK stars)
Independent pipeline for young stars: Li, chromospheric activity indices
Desirable : Li C Q(Q) Ca Mg Si Ti) Fe peak (Ni Cr Cc

Li, C, α (O, Ca, Mg, Si, Ti), Fe-peak (Ni, Cr, Co, Ni), odd-Z (Na, Al), neutron-capture (s: Zr, Y, Sr, Ba, La,Nd; r: Eu, Sm)

APS ? contribution ?

GLOBULAR CLUSTERS science case

- Important "per se" (oldest, metal-poorest stellar clusters)
- Test of stellar evolution models & astrophysical processes
- Connection with the halo

26

Chemistry: $GC \approx$ halo field stars?

α -elements

O & Na : GCs \neq field

Gratton et al. 2003

Carretta et al. 2009a,b

Use WEAVE GCs for comparison with candidate escapees ...

HR chemodynamical survey

Figure 3-12: Possible area coverage strategy for the HR chemo-dynamical survey. Each black dot is a WEAVE tile, making a total footprint of ~2300 WEAVE fields or ~6800 deg², of which 5000 deg² are at galactic latitudes $|b| > 30^{\circ}$. 6 30 ...two target selections, one centred on Galactic latitude the main sequence turn-off (MSTO), and the other capturing the red giant and horizontal branches. The magnitude range 30 used here will be $12 \le G \le 16$, to allow S/ N>60 per resolution element to be reached in 2h of integration in WEAVE's red arm, and S/ N>30-40 per resolution element in the blue. 6-30 60 90 120 210 330 150 180 240 270 300 360 0

Galactic longitude

HR chemodynamical survey + GCs

GCs & WEAVE

31 May 2016							Italia	n WE	AVE Wo	rkshop -	Roma 32			
NAME	Mess.	Rsun	E(B-V)	V_HB	(m-M)v	M_Vt	c	r_t	r_h	l	b			
NGC6838	M71	4.0	0.25	14.48	13.8	-5.61	1.15	8.899	1.67	56.75	-4.56	APOGEE	GES?	FLAMES
NGC6218	M12	4.8	0.19	14.6	14.01	-7.31	1.34	17.28	1.77	15.72	26.31		GES	FLAMES
NGC6254	M10	4.4	0.28	14.65	14.08	-7.48	1.38	18.47	1.95	15.14	23.08	APOGEE	GES?	FLAMES
NGC6205	M13	7.1	0.02	14.9	14.33	-8.55	1.53	21.01	1.69	59.01	40.91	APOGEE		
NGC5904	M5	7.5	0.03	15.07	14.46	-8.81	1.73	23.63	1.77	3.86	46.8	APOGEE		
NGC6341	M92	8.3	0.02	15.1	14.65	-8.21	1.68	12.44	1.02	68.34	34.86	APOGEE		
NGC5272	M3	10.2	0.01	15.64	15.07	-8.88	1.89	28.72	2.31	42.22	78.71			
NGC6366	-	3.5	0.71	15.65	14.94	-5.74	0.74	11.93	2.92	18.41	16.04			
NGC6535	-	6.8	0.34	15.75	15.22	-4.75	1.33	7.697	0.85	27.18	10.44			
NGC7078	M15	10.4	0.1	15.83	15.39	-9.19	2.29	27.3	1.0	65.01	-27.31	APOGEE	GES	FLAMES
NGC7089	M2	11.5	0.06	16.05	15.5	-9.03	1.59	12.45	1.06	53.37	-35.77	APOGEE	GES	
NGC6779	M56	9.4	0.26	16.18	15.68	-7.41	1.38	10.55	1.1	62.66	8.34			
NGC6712	-	6.9	0.45	16.25	15.6	-7.5	1.05	8.527	1.33	25.35	-4.32			
PAL1	-	11.1	0.15	16.4	15.7	-2.52	2.57	3.715	0.46	130.06	19.03			
NGC5466	-	16.0	0.0	16.52	16.02	-6.98	1.04	15.68	2.3	42.15	73.59			
NGC5053	-	17.4	0.01	16.69	16.23	-6.76	0.74	11.43	2.61	335.7	78.95	APOGEE		
NGC5024	M53	17.9	0.02	16.81	16.32	-8.71	1.72	18.37	1.31	332.96	79.76	APOGEE	GES?	
NGC6934	-	15.6	0.1	16.86	16.28	-7.45	1.53	7.455	0.69	52.1	-18.89			
NGC4147	-	19.3	0.02	17.02	16.49	-6.17	1.83	6.085	0.48	252.85	77.19			
NGC6402	M14	9.3	0.6	17.3	16.69	-9.1	0.99	7.72	1.3	21.32	14.81			
NGC6760	-	7.4	0.77	17.46	16.72	-7.84	1.65	15.19	1.27	36.11	-3.92			
PAL11	-	13.4	0.35	17.46	16.72	-6.92	0.57	4.421	1.46	31.81	-15.57			
PAL5	-	23.2	0.03	17.51	16.92	-5.17	0.52	7.583	2.73	0.85	45.86	Q ₇	alih	ratora
NGC5634	-	25.2	0.05	17.68	17.16	-7.69	2.07	10.57	0.86	342.21	49.26		and	121015

WHAT NEXT?

- Refine strategy for observations
- Refine cluster selection
- Time allocated to clusters ?
- Define man-power
- Define tasks
- SV plans
- Early science candidate projects