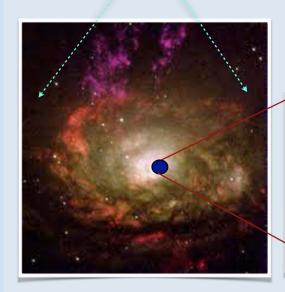


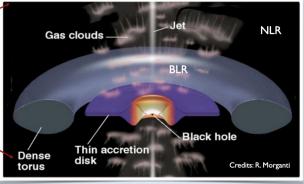
IDENTIKIT OF A RADIO GALAXY

Reference paper:

[1] https://arxiv.org/pdf/astro-ph/0511784

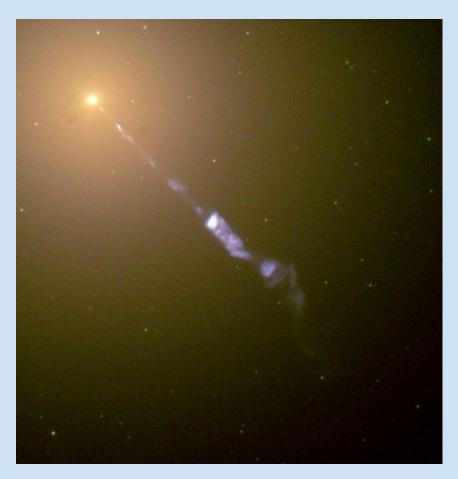
[2] https://arxiv.org/pdf/astro-ph/0512600

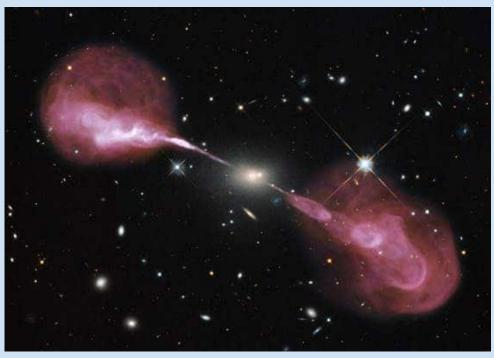



The central engine of a AGN

The engine occupies a tiny region in the center of the galaxy

30 kpc

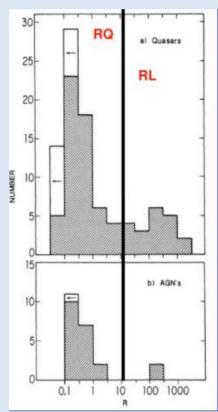

2-3 pc

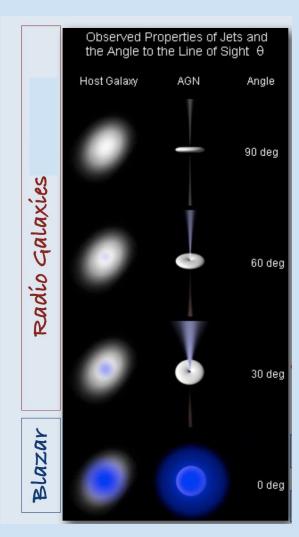


This is the same for both Radio-Quiet and Radio-Loud AGN

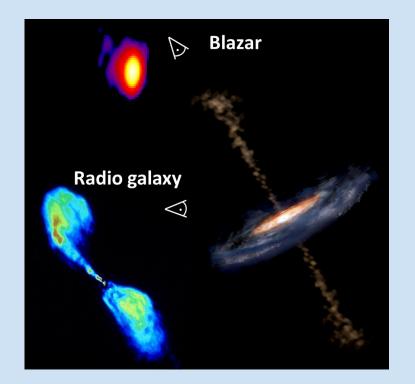
The extraordinary amount of energy is produced through accretion of gas close to a SMBH

Radio-Loud (RL) AGN are able to launch RELATIVISTIC JETS


RL AGN represent ~10% of all AGN


RADIO LOUDNESS PARAMETER (R)

$$R = \frac{F_{GHz}}{F_B} \ge 10.$$


This definition is based on a study of 114 objects from the Palomar Bright Quasar Survey with VLA (Kellermann 1989)

Quasars have blue magnitude $M_B < -23$, while AGN have $M_b > -23$



Radio-loud AGN are divided into **Blazars** and **Radio Galaxies**, depending on the inclination angle of the relativistic jet w.r.t. the observer.

Radio classification

(Fanaroff & Riley 1974)

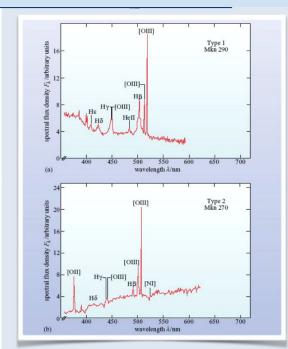
FRII

FRI - L_{178MHz} <2×10²⁵ W Hz⁻¹ sr⁻¹ FRII - L_{178MHz}>2×10²⁵ W Hz⁻¹ sr⁻¹ Historically, the classification was based on **radio morphology**, which in practice translated into a distinction by radio luminosity at 178 MHz.

FR I:

- > The regions of maximum brightness are **close to the center**.
- > Jets are bright near the core and then *fade* outward (**edge-darkened**).
- > More diffuse and less collimated large-scale structure.

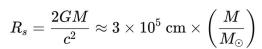
FR I: edge-dimmed – brightest near core – low radio power

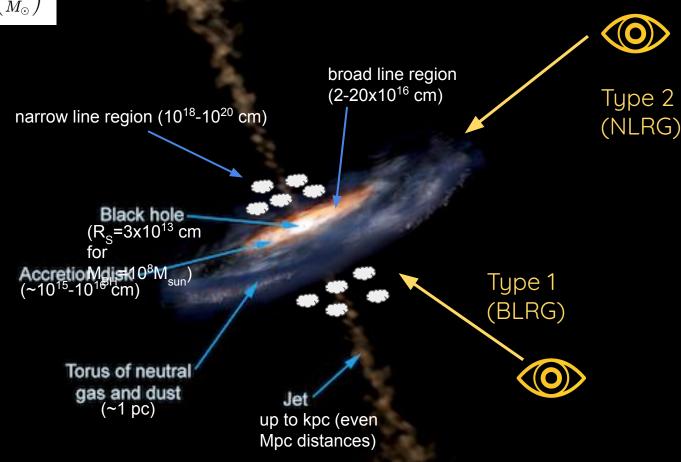

FR II:

- > The brightest regions lie **at the outer edges** of the lobes (hotspots).
- > Jets remain collimated and terminate in bright hotspots (edge-brightened).
- > More powerful and well-defined structures.

FR II: edge-brightened – hotspots at the ends – high radio power

Optical classification i) Orientation


bright continuum and BROAD emission lines from hot high Type I velocity gas (FWHM~10³⁻⁴ km s⁻¹) face-on weak continuum and only Type II NARROW emission lines (FWHM~10² km s⁻¹) edge-on



Broad Line Radio Galaxies (BLRG)

Quasars (large z)

Narrow Line Radio Galaxies (NLRG)

1 parsec = 3.0857×10^{18} cm

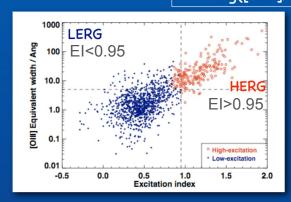
Optical classification

ii) accretion efficiency in the central engine

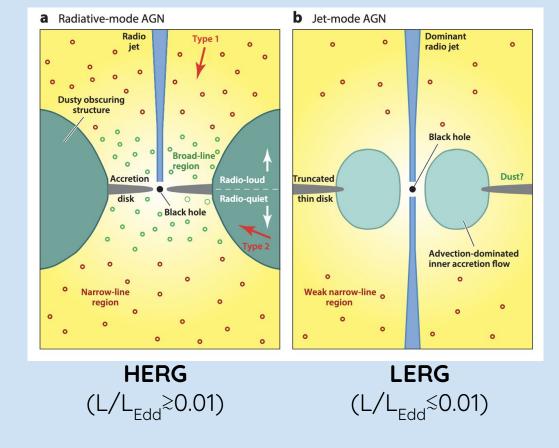
High-excitation (HERG) and low-excitation (LERG) RG ACCRETION MODE

This classification is related to the excitation modes of the gas in the Narrow Line Regions:
different excitation modes correspond to different accretion rates

Laing et al. (1994)


HERG: EW[OIII]>3 Å

[OIII]/Ha > 0.2

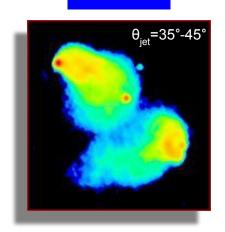

Excitation Index

(Buttiglione et al. 2010)

EI=log([OIII]/Hb)-1/3[log([NII])/Ha) +log([SII]/Ha)+log([OI]/Ha)]

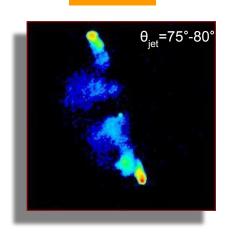
HERG: almost FRII LERG: both FRI and FRII

Inefficient accretion


Efficient

accretion

 L_{Edd} =Eddington luminosity= $(4\pi Gm_p c/\sigma_T)M_{BH} = 3.3 \times 10^4 M_{BH}$ (<u>Heckman & Best 2014</u>)


The sources

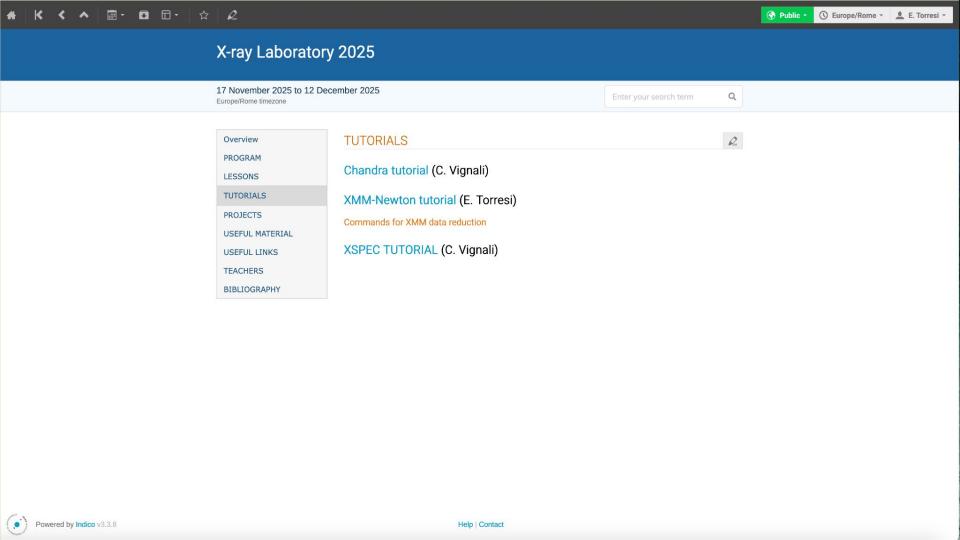
3C 382

- -z=0.055
- FRII
- Broad Line Radio Galaxy
- HERG
- M_{BH} = 1.1x10⁹ M_{SUN} (Ferrarese et al. 2004)

3C 33

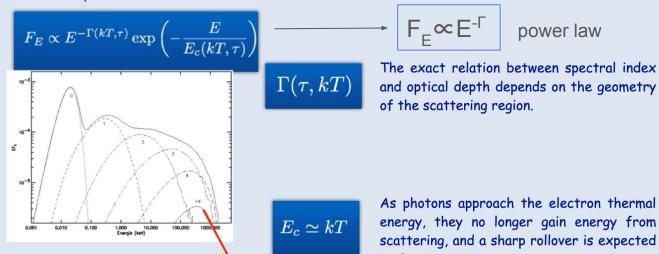
- -z=0.061
- FRII
- Narrow Line Radio Galaxy
- HERG
- $M_{BH} = 5.3 \times 10^8 M_{SUN}^{(Buttiglione et al. 2010)}$

1. Choose one of the two sources:


DATA REDUCTION

- creation of the background light curve above 10 keV (soft protons!)
- selection of the good time intervals (GTI)
- overlay of the radio contours and selection of the source and background spectral extraction regions (in particular for 3C 33)
- spectrum extraction

EXTRACTION OF THE (BACKGROUND-CORRECTED) LIGHT CURVE OF THE SOURCE


■ SPECTRAL ANALYSIS→ XSPEC

- find the **best-fit model** and describe the resulting spectral parameters in their physical context (e.g. photon index Γ , N_{H} , iron line)
- estimate of the (intrinsic or observed) **flux** and/or **luminosity** with relative uncertainties
- estimate of the **accretion rate** of the source
- 2. Repeat the exercise for the other radio galaxy, then compare the two sources (optional)

Thermal Comptonization Spectrum: the Continuum

cut-off power law

X-rays

18

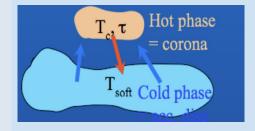
Spectral Energy Distribution (SED)

Big Blue Bump

16

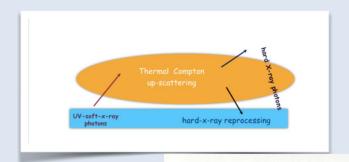
log V

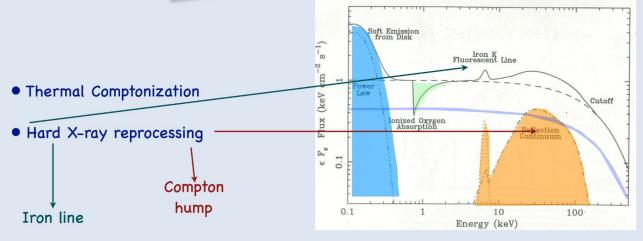
IR bump


14

Radio

log v F(v)


As photons approach the electron thermal energy, they no longer gain energy from scattering, and a sharp rollover is expected in the spectrum.


The observed high energy spectral cutoff yields information about the temperature of the underlying electron distribution.

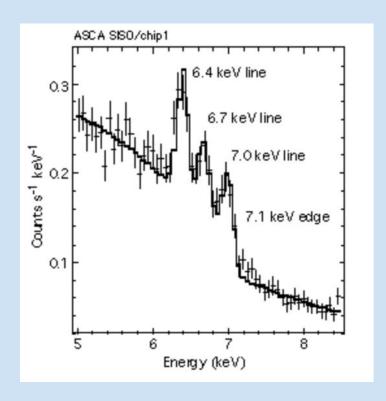
Haardt & Maraschi 1991

Reprocessed features

32

Lightman & White 1988

George & Fabian 1991


Iron line & Reflection

A prominent spectral feature produced by **fluorescent emission of iron** after X-ray illumination:

- 6.4 keV \rightarrow neutral or weakly ionized FeK α
- **6.7 keV** → He-like Fe XXV
- **6.97 keV** → H-like Fe XXVI

It is a key diagnostic of the **accretion environment**, revealing information about:

- ionization state of the gas
- relativistic effects near the black hole (broadening of the line)
- reflection from the torus or accretion disk

In XPEC the simplest way to represent the line is a gaussian model (gauss, zgauss)

Parameters of the Gaussian Line Model

1. LineE (keV) - Line energy

• Rest-frame energy of the Fe line.

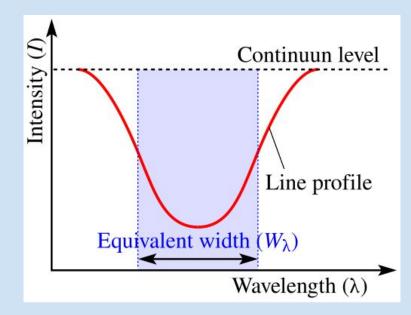
2. Sigma (keV) - Line width

- Standard deviation of the Gaussian profile.
- Controls how broad the line appears.
- Physically related to gas velocity via Doppler broadening.
- Typical regimes:
 - $\sigma \leq 0.05 \text{ keV} \rightarrow \text{narrow line from distant material (it can be fixed also =0)}$
 - \circ σ ≥ 0.1–0.3 keV \rightarrow broader line (higher velocities)

3. Norm - Line normalization

- Total flux of the emission line (photons cm⁻² s⁻¹).
- Measures the *strength* of the line.
- Used to compute the equivalent width (EW).

Equivalent width


The Equivalent Width (EW) is a measure of the strength of an emission or absorption line relative to the underlying continuum.

It represents the width of a hypothetical rectangle, at the level of the continuum, that contains the same total flux as the spectral line.

$$EW = \int rac{F_{
m line}(E)}{F_{
m cont}(E)} \, dE$$

xspec

eqwidth <component_number>

Estimating the Emission Radius of the FeKα Line

1. From line width to velocity

A narrow Fe K α line is usually broadened by **Doppler motion** of gas orbiting the black hole. From the observed Gaussian width:

$$\Delta v = (8 \ln 2)^{1/2} \sigma_{obs} c/E_{obs}$$

This gives an estimate of the **orbital velocity** of the emitting gas ($\Delta v \sim v$).

2. Virial assumption

If the gas is **gravitationally bound** and moves in Keplerian orbits, we can relate velocity and radius:

So the emission radius is:

$$R = GM_{BH}/v^2$$
 [cm]

The N_H parameter

What is the column density N_{H} ?

• N_H is the total number of hydrogen atoms per unit area along the line of sight:

$$N_{\rm H}$$
 [cm⁻²]

- It quantifies how much gas absorbs X-ray photons before they reach the observer.
- Low-energy photons are absorbed more efficiently → producing the *photoelectric cutoff* in the spectrum.

Types of N_H in a X-ray spectrum

1. Galactic N_H

- Absorption due to the interstellar medium of the Milky Way (HI, H₂, dust).
- It is fixed for a given sky direction.
- Typical values: 10²⁰–10²¹ cm⁻²
- In XSPEC it is usually modeled with **tbabs / phabs / wabs**, with N_H **frozen** to literature values (HI4PI, Kalberla et al. 2005, Willingale et al. 2013).

2. Intrinsic N_H

- Absorption produced by gas within the source, e.g. circumnuclear material in an AGN (generally associated with a torus)
- It is **free to vary** during the fit, providing physical insight.
- Compton-thin: $N_{H} < 10^{24} \text{ cm}^{-2}$
- Compton-thick: N_L>10²⁴ cm⁻²
- In XSPEC it is typically modeled with **ztbabs** (or **zphabs**) at the redshift of the source.

Estimate of the accretion rate

Mass accretion rate

Mass accretion rate in Eddington units

$$\dot{M} = rac{L_{
m bol}}{\epsilon\,c^2}$$

$$\dot{m} = rac{L_{
m bol}}{L_{
m Edd}}$$

This ratio can also be used as a **proxy** for the accretion rate

$$\dot{m} \propto rac{L_X}{L_{
m Edd}}$$

