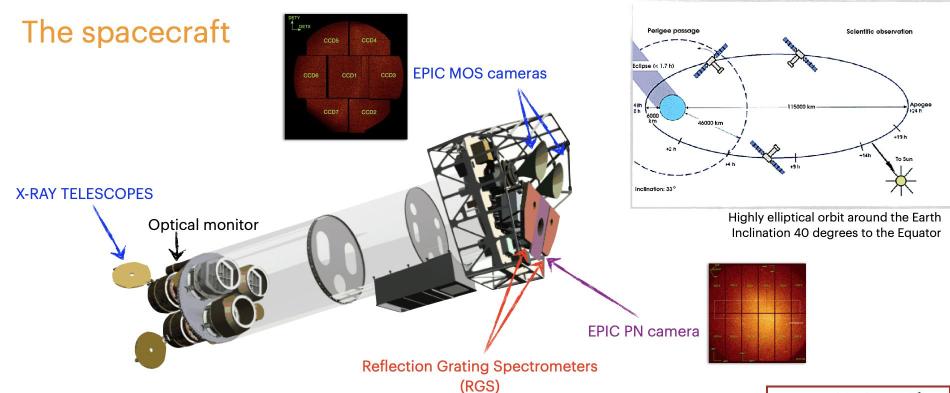


XMM-Newton tutorial for data reduction

https://indico.ict.inaf.it/e/labx25


Eleonora Torresi (INAF-OAS Bologna)

Outline

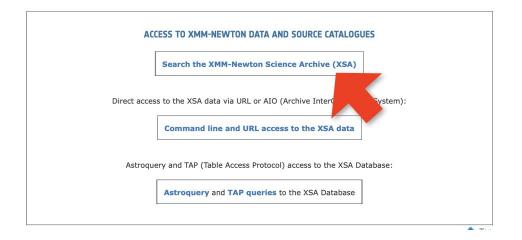
- The spacecraft
- Webpage, software and data download
- Data structure
- SAS
- Data re-processing
- Data reduction:

 - -> filtering for high particle background
 -> selection of good time intervals (GTI)
 -> selection of source and background extraction regions
- **EPIC** science modes
- Pileup
- Extraction of source and background spectra
- RMF & ARF
- Grouping
- Light curve extraction

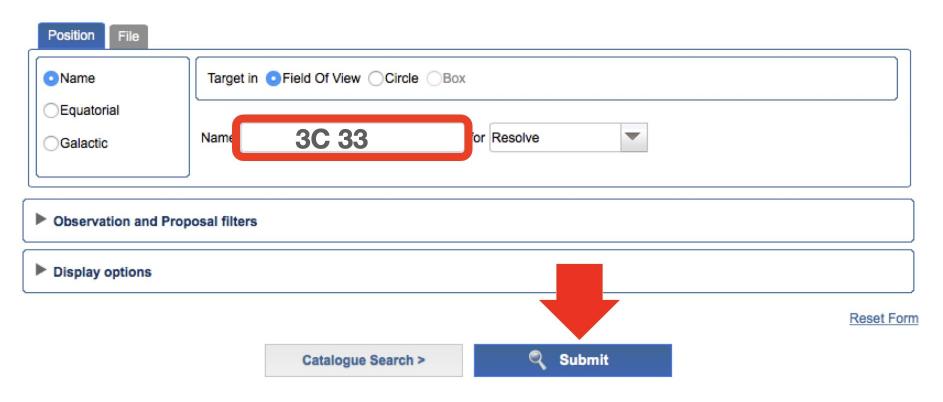
All instruments in the focal plane "active" for each observation

XMM-Newton archive & data download

https://www.cosmos.esa.int/web/xmm-newton/xsa

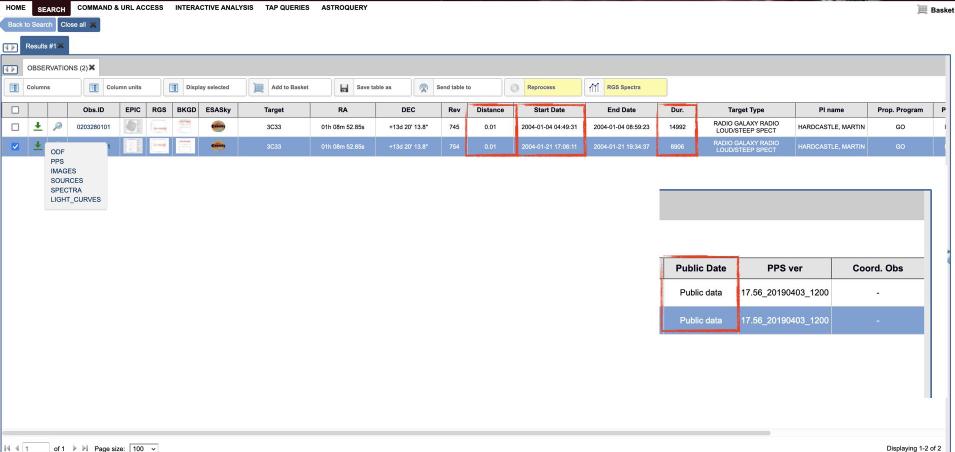

XMM-Newton » Archive, Pipeline & Catalogues » XMM-Newton Science Archive

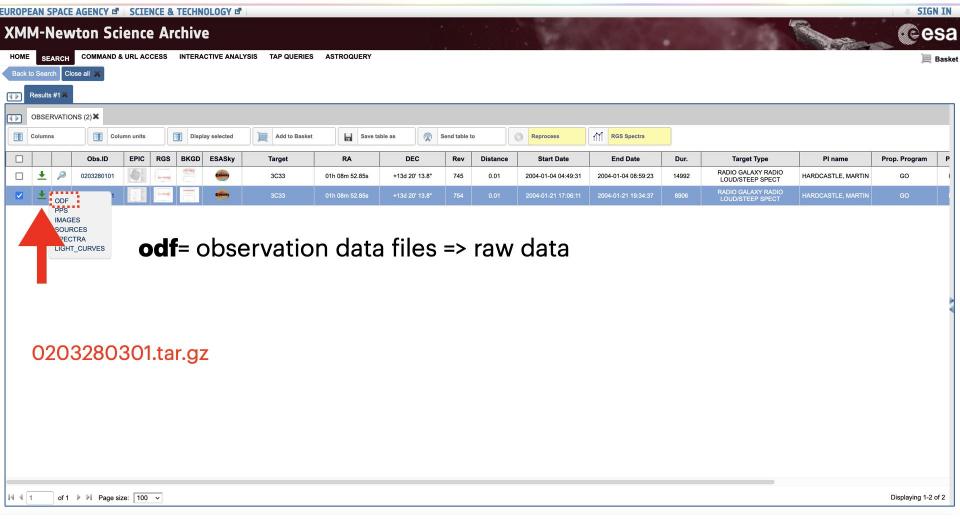
Home / Latest News XMM-Newton 20th Anniversary Conferences & Meetings News General User Support Proposers Info Observers Info Data Analysis Archive, Pipeline & Catalogues Calibration & Background SOC Info About XMM-Newton **Image Gallery Publications** Other Links


XMM-NEWTON SCIENCEX ARCHIVE (XSA)

INDEX

- Access to XMM-Newton Data and Source Catalogues
- Download Full XMM-Newton Catalogues and datasets New
- Tools
- Watchouts
- Notes on the XSA releases New
- Documentation
- Questions, Comments



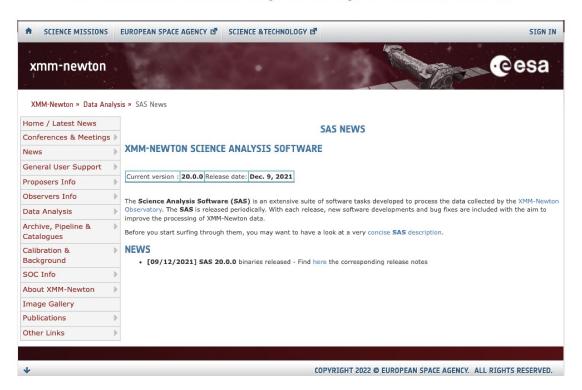

XMM-Newton Science Archive

Displaying 1-2 of 2

of 1 Page size: 100 V

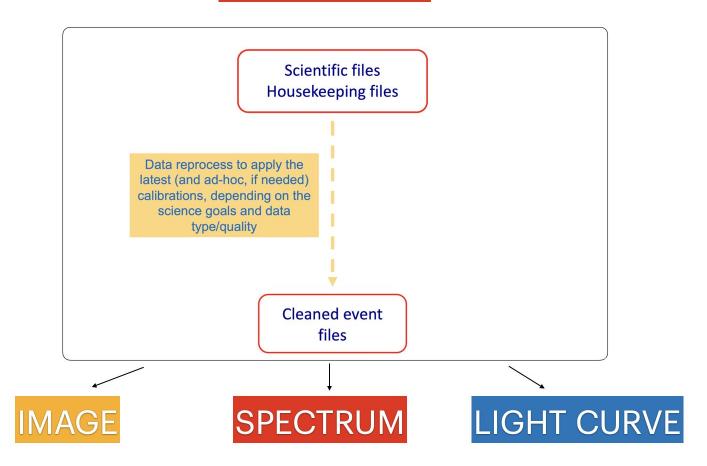
Data structure

example: 0203280301.tar.gz -> tar -zxvf 0203280301.tar.gz

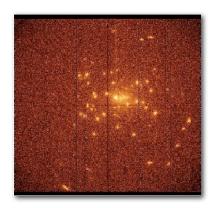

-z= unzip -xvf=untar

0231 0065940101.TAR	0231_0065940101_0MS40100RFX.FIT	0231_0065940101_0MU00700WDX.FIT	0231_0065940101_PNU00706DLI.FIT	0231_0065940101_R1S91904DII.FIT	0231_0065940101_R2S91509DII.FIT
0231_0065940101.M1S00300AUX.FIT	0231_0005940101_0MS40100THX.FIT	0231_0065940101_0MU00701IMI.FIT	0231_0065940101_PNU00807DLI.FIT	0231_0065940101_R1S92005DII.FIT	0231_0065940101_R2S91601DII.FIT
0231_0065940101_M1S00310IME.FIT	0231_0065940101_0MS40100WDX.FIT	0231_0065940101_0MU00800IMI.FIT	0231_0065940101_PNU00908DLI.FIT	0231_0065940101_R1S92106DII.FIT	0231_0065940101_R2S91702DII.FIT
0231_0065940101_M1S00320IME.FIT	0231_0065940101_0MS40101IMI.FIT	0231_0065940101_OMU00800WDX.FIT	0231_0065940101_PNU01009DLI.FIT	0231_0065940101_R1S92208DII.FIT	0231_0065940101_R2S91803DII.FIT
0231_0065940101_M1S00330IME.FIT	0231_0065940101_0MS40200IMI.FIT	0231_0065940101_0MU00801IMI.FIT	0231_0065940101_PNU01110DLI.FIT	0231_0065940101_R1S92309DII.FIT	0231_0065940101_R2S91905DII.FIT
0231 0065940101 M1S00340IME.FIT	0231_0065940101_0MS40200RFX.FIT	0231_0065940101_0MX00000NPH.FIT	0231_0065940101_PNU01211DLI.FIT	0231_0065940101_R1S92401DII.FIT	0231 0065940101 R2S92006DII.FIT
0231_0065940101_M1S00350IME.FIT	0231_0065940101_0MS40200THX.FIT	0231 0065940101 OMX00000PEH.FIT	0231_0065940101_PNU01312DLI.FIT	0231_0065940101_R1S92502DII.FIT	0231_0065940101_R2S92107DII.FIT
0231_0065940101_M1S00360IME.FIT	0231_0065940101_OMS40200WDX.FIT	0231_0065940101_PNS00400AUX.FIT	0231_0065940101_PNX00000HCH.FIT	0231_0065940101_R1S92603DII.FIT	0231_0065940101_R2S92208DII.FIT
0231_0065940101_M1S00370IME.FIT	0231_0065940101_OMS40201IMI.FIT	0231_0065940101_PNS00400CCX.FIT	0231_0065940101_PNX00000PAH.FIT	0231_0065940101_R1S92704DII.FIT	0231_0065940101_R2S92309DII.FIT
0231_0065940101_M1X00000HBH.FIT	0231_0065940101_OMS40300IMI.FIT	0231_0065940101_PNS00401IME.FIT	0231_0065940101_PNX00000PMH.FIT	0231_0065940101_R1S92805DII.FIT	0231_0065940101_R2S92401DII.FIT
0231_0065940101_M1X00000HCH.FIT	0231_0065940101_OMS40300RFX.FIT	0231_0065940101_PNS00402IME.FIT	0231_0065940101_R1S00500AUX.FIT	0231_0065940101_R1X00000D1H.FIT	0231_0065940101_R2S92502DII.FIT
0231_0065940101_M1X00000HTH.FIT	0231_0065940101_OMS40300THX.FIT	0231_0065940101_PNS00403IME.FIT	0231_0065940101_R1S00501SPE.FIT	0231_0065940101_R1X00000D2H.FIT	0231_0065940101_R2S92603DII.FIT
0231_0065940101_M1X00000PEH.FIT	0231_0065940101_OMS40300WDX.FIT	0231_0065940101_PNS00404IME.FIT	0231_0065940101_R1S00502SPE.FIT	0231_0065940101_R1X000000FX.FIT	0231_0065940101_R2S92705DII.FIT
0231_0065940101_M1X00000PTH.FIT	0231_0065940101_OMS40301IMI.FIT	0231_0065940101_PNS00405IME.FIT	0231_0065940101_R1S00503SPE.FIT	0231_0065940101_R1X00000PFH.FIT	0231_0065940101_R2S92806DII.FIT
0Z31_0065940101_MZS00700AUX.F1T	0231_0065940101_OMS40400IMI.FIT	0231_0065940101_PNS00406IME.FIT	0231_0065940101_R1S00504SPE.FIT	0231_0065940101_R2S00600AUX.FIT	0231_0065940101_R2X00000D1H.FIT
0231_0065940101_M2S00710IME.FIT	0231_0065940101_OMS40400RFX.FIT	0231_0065940101_PNS00407IME.FIT	0231_0065940101_R1S00505SPE.FIT	0231_0065940101_R2S00601SPE.FIT	0231_0065940101_R2X00000D2H.FIT
0231_0065940101_M2S00720IME.FIT	0231_0065940101_OMS40400THX.FIT	0231_0065940101_PNS00408IME.FIT	022 65940101_R1S00506SPE.FIT	0231_0065940101_R2S00602SPE.FIT	0231_0065940101_R2X000000FX.FIT
0231_0065940101_M2S00730IME.FIT	0231_0065940101_OMS40400WDX.FIT	0231_0065940101_PNS00409IME.FIT	5940101_R1S00508SPE.FIT 40101_R1S00509SPE.FIT	0231_0065940101_R2S00603SPE.FIT	0231_0065940101_R2X00000PFH.FIT
0231_0065940101_M2S00740IME.FIT	0231_0065940101_OMS40401IMI.FIT	0231_0065940101_PNS00410IMF	40101_R1S00509SPE.FIT	0231_0065940101_R2S00605SPE.FIT	0Z31_0065940101_RMX00100ECX.F1T
0231_0065940101_M2S00750IME.FIT	0231_0065940101_OMS40500IMI.FIT	0231_0065940101_PNS0041	065940101_R1S90001D11.F11	0231_0065940101_R2S00606SPE.FIT	0231_0065940101_RMX00100ESX.FIT
0231_0065940101_M2S00760IME.FIT	0231_0065940101_OMS40500WDX.FIT	0231_0065940101_PNS	231_0065940101_R1S90102DII.FIT	0231_0065940101_R2S00607SPE.FIT	0231_0065940101_SCX000000ATS.FIT
0231_0065940101_M2S00770IME.FIT	0231_0065940101_OMS40501IMI.FIT	0231_0065940101_PNU	0231_0065940101_R1S90203DII.FIT	0231_0065940101_R2S00608SPE.FIT	0231_0065940101_SCX00000P1S.FIT
0231_0065940101_M2X00000HBH.FIT	0231_0065940101_OMU00200IMI.FIT	0231_0065940101_PNU0	0231_0065940101_R1S90304DII.FIT	0231_0065940101_R2S00609SPE.FIT	0231_0065940101_SCX00000P2S.FIT
0231_0065940101_M2X00000HCH.FIT	0231_0065940101_OMU00200WDX.FIT	0231_0065940101_PNU004_10DI.FIT	0231_0065940101_R1S90405DII.FIT	0231_0065940101_R2S90001DII.FIT	0231_0065940101_SCX00000P3S.FIT
0231_0065940101_M2X00000HTH.FIT	0231_0065940101_0MU00201IMI.FIT	0231_0065940101_PNU004020DI.FIT	0231_0065940101_R1S90506DII.FIT	0231_0065940101_R2S90102DII.FIT	0231_0065940101_SCX00000P4S.FIT
0231_0065940101_M2X00000PEH.FIT	0231_0065940101_OMU00300IMI.FIT	0231_0065940101_PNU00403DLI.FIT	0231_0065940101_R1S90608DII.FIT	0231_0065940101_R2S90203DII.FIT	0231_0065940101_SCX000000P5S.FIT
0231 0065940101 M2X00000PTH.FTT	0231_0065940101_OMU00300WDX.FIT	0231_0065940101_PNU004030DI.FIT	0231_0065940101_R1S90709DII.FIT	0231_0065940101_R2S90305DII.FIT	0231_0065940101_SCX00000P6S.FIT
0231_0065940101_0MS00800IMI.FIT	0231_0065940101_0MU00301IMI.FIT	0231_0065940101_PNU004040DI.FIT	0231_0065940101_R1S90801DII.FIT	0231_0065940101_R2S90406DII.FIT	0231_0065940101_SCX00000P7S.FIT
0231_0065940101_0MS00800RFX.FIT	0231_0065940101_0MU00400IMI.FIT	0231_0065940101_PNU004050DI.FIT	0231_0065940101_R1S90902DII.FIT	0231_0065940101_R2S90507DII.FIT	0231_0065940101_SCX00000P8S.FIT
0231_0065940101_0MS00800THX.FIT	0231_0065940101_OMU00400WDX.FIT	0231_0065940101_PNU004060DI.FIT	0231_0065940101_R1S91003DII.FIT	0231_0065940101_R2S90608DII.FIT	0231_0065940101_SCX00000P9S.FIT
0231_0065940101_0MS00800WDX.FIT	0231_0065940101_0MU00401IMI.FIT	0231_0065940101_PNU004070DI.FIT	0231_0065940101_R1S91104DII.FIT	0231_0065940101_R2S90709DII.FIT	0231_0065940101_SCX00000RAS.ASC
0231_0065940101_0MS00801IMI.FIT	0231_0065940101_0MU005001MI.FIT	0231_0065940101_PNU004080DI.FIT	0231_0065940101_R1S91205DII.FIT	0231_0065940101_R2S90801DII.FIT	0231_0065940101_SCX00000ROS.ASC
0231_0065940101_0MS01000IMI.FIT 0231_0065940101_0MS01000WDX.FIT	0231_0065940101_0MU00500WDX.FIT 0231_0065940101_0MU00501IMI.FIT	0231_0065940101_PNU004090DI.FIT 0231_0065940101_PNU004100DI.FIT	0231_0065940101_R1S91306DII.FIT 0231_0065940101_R1S91408DII.FIT	0231_0065940101_R2S90902DII.FIT 0231_0065940101_R2S91003DII.FIT	0231_0065940101_SCX000000SUM.ASC 0231_0065940101_SCX00000SUM.SAS
0231_0065940101_0MS01000WDX.FIT 0231_0065940101_0MS01001IMI.FIT	0231_0065940101_0MU005011M1.FIT	0231_0065940101_PNU004100D1.FIT 0231_0065940101_PNU004110DI.FIT	0231_0065940101_R1S91408DII.FIT	0231_0065940101_R2S91003DII.FIT	0231_0065940101_SCX000000SUM.SAS 0231_0065940101_SCX00000TCS.FIT
0231_0065940101_0MS010011M1.FIT	0231_0065940101_0MU006000HMI.FIT	0231_0065940101_PNU004110D1.FIT	0231_0065940101_R1S91509DII.FIT	0231_0065940101_R2S91103D11.FIT	0231_0065940101_SCX00000TCX.FIT
0231_0065940101_0MS40000PAX.FIT	0231_0065940101_0MU006000MDX.FIT	0231_0065940101_PNU00504DLI.FIT	0231_0065940101_R1S91601011.FIT	0231_0065940101_R2S91200DII.FIT	MANIFEST.284964
0231_0003940101_0M340000KFX.FIT	0231_0003940101_0MU00700IMI.FIT	0231_0065940101_PN000504DLI.FIT	0231_0003940101_R1391702D11.FIT	0231_0065940101_R2S91408DII.FIT	MARTIEST. 204304
	THI GO TOO DO TO	DEST_0003340141_FN000003DE1.F11	OZDI GOODGECINI INTOPECCOOCIETI	0231_0003340101_K2331400UII.FII	
MOC1					

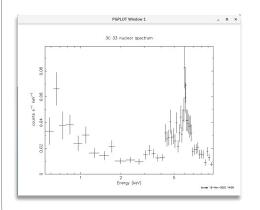
MOS1 OM pn RGS1 RGS2

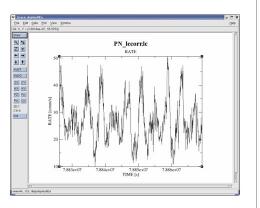

Data reduction

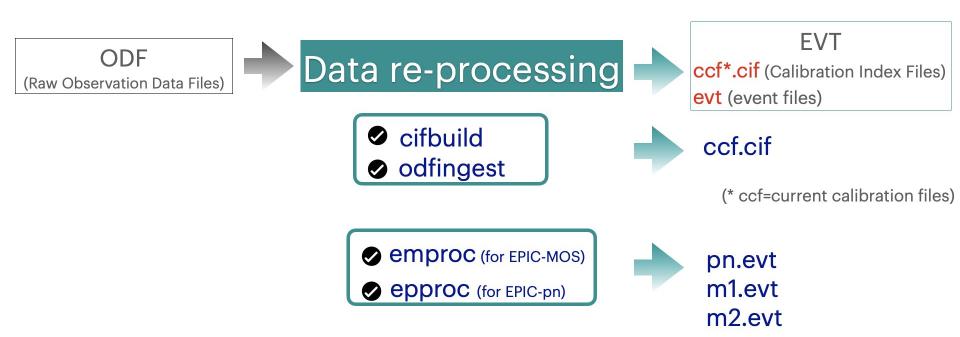
Standard Analysis System (SAS)



Data reduction


SAS threads


IMAGE


SPECTRUM

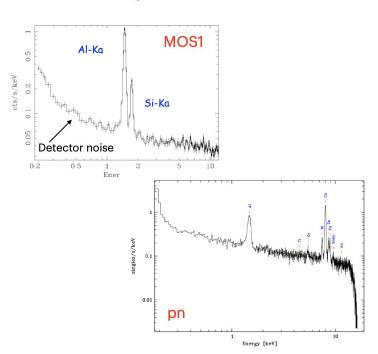
LIGHT CURVE

Data re-processing (= creation of **event files**)

#rows=#counts

	X fv: Si	ummary of pn.	evt in /blasco/users/torresi/LAB	-X/Fall_2022	/3C33_	LABX/p	n/		
File Edit	Fools Help								
Index	Extension	Туре	Dimension		ı	View			
= 0	Primary	lmage	0	Header	lma	age	7	Fable	
1	EVENTS	Binary	15 cols X 131297 rows	Header	Hist	Plot	All	Select	
2	OFFSETS	Binary	3 cols X 14 rows	Header	Hist	Plot	All	Select	
3	EXPOSU01	Binary	2 cols X 95904 rows	Header	Hist	Plot	All	Select	
4	BADPIX01	Binary	5 cols X 72 rows	Header	Hist	Plot	All	Select	
= 5	DLIMAP01	Binary	3 cols X 200 rows	Header	Hist	Plot	All	Select	
6	HKAUX01	Binary	2 cols X 4789 rows	Header	Hist	Plot	All	Select	
7	EXPOSU02	Binary	2 cols X 95901 rows	Header	Hist	Plot	All	Select	
8	BADPIX02	Binary	5 cols X 68 rows	Header	Hist	Plot	All	Select	
9	DLIMAP02	Binary	3 cols X 200 rows	Header	Hist	Plot	All	Select	

Edit	Tools Help				10.00						/3C33_LABX/p				
Select	■ TIME	■ RAWX	RAWY	■ DETX	■ DETY	■×	■Y	■ PHA	■ PI	■ FLAG J	PATTERN B	PAT_ID	PAT_SEQ	■ CCDNR B	■ TIME_RAW
■ All	s	pixel	pixel	0.05 arcsec	0.05 arcsec	0.05 arcsec	0.05 arcsec	channel	eV	•	b	•	ь		s
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	1.910934147154E+08	23	24	-4118	13485	18376	16096	24	211	0	1	5121	0	1	1.910934146937E+08
2	1.910934172390E+08	41	84	-5619	8551	18939	21222	158	835	0	0	0	0	1	1.910934172615E+08
3	1.910934173916E+08	7	47	-2815	11608	20313	17308	21	209	0	4	5121	0	1	1.910934174082E+08
4	1.910934174143E+08	13	47	-3294	11601	19875	17503	33	279	0	2	5122	0	1	1.910934174082E+08
5	1.910934173875E+08	58	64	-7048	10182	16984	20286	2635	13720	0	0	0	0	1	1.910934174082E+08
6	1.910934184187E+08	14	119	-3355	5690	22147	22960	111	585	0	0	0	0	1	1.910934184353E+08
7	1.910934196784E+08	34	125	-5034	5146	20818	24122	2918	24348	0	2	5121	0	1	1.910934196825E+08
8	1.910934197620E+08	45	14	-5919	14325	16389	16033	30	400	1	78	1	1	1	1.910934197559E+08
9	1.910934199950E+08	10	115	-3048	6034	22294	22523	30	158	0	0	0	0	1	1.910934199760E+08
10	1.910934209479E+08	64	146	-7536	3436	19192	26679	377	2097	4	0	0	0	1	1.910934209297E+08
11	1.910934212498E+08	11	42	-3096	11994	19902	17064	965	4788	0	0	0	0	1	1.910934212232E+08
12	1.910934246840E+08	39	13	-5436	14441	16788	15736	39	192	32	0	0	0	1	1.910934246713E+08
13	1.910934246531E+08	39	17	-5405	14090	16954	16047	31	692	1	96	1	1	1	1.910934246713E+08
14	1.910934253051E+08	4	111	-2520	6289	22679	22081	31	160	0	0	0	0	1	1.910934253316E+08
15	1.910934259405E+08	19	173	-3791	1226	23505	27235	40	297	8	0	0	0	1	1.910934259185E+08
16	1.910934283720E+08	11	122	-3167	5397	22436	23155	255	1330	0	0	0	0	1	1.910934283396E+08
17	1.910934289507E+08	49	146	-6305	3404	20336	26223	2870	15263	0	0	0	0	1	1.910934289265E+08
18	1.910934291953E+08	6	138	-2736	4076	23352	24200	866	6695	0	1	5121	0	1	1.910934292200E+08
19	1.910934303410E+08	10	161	-3039	2187	23818	26056	28	155	0	0	0	0	1	1.910934303205E+08
20	1.910934320374E+08	23	146	-4097	3414	22362	25344	42	225	0	0	0	0	1	1.910934320078E+08
21	1.910934323060E+08	43	175	-5762	1046	21764	28177	2745	19547	0	7	5121	1	1	1.910934323013E+08
22	1.910934341115E+08	4	16	-2581	14133	19533	14895	26	232	0	3	5121	1	1	1.910934341354E+08
23	1.910934341378E+08	4	21	-2555	13784	19695	15205	34	160	0	0	0	5	1	1.910934341354E+08
24	1.910934362451E+08	61	13	-7263	14438	15110	16459	159	1076	1	2	1	0	1	1.910934362630E+08
25	1.910934363497E+08	54	140	-6705	3949	19754	25880	62	343	0	0	0	0	1	1.910934363364E+08
26	1.910934365385E+08	43	184	-5761	328	22048	28836	27	158	0	0	0	0	1	1.910934365565E+08

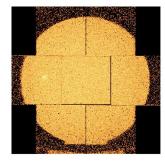

Filtering against high background periods

EPIC particle induced background

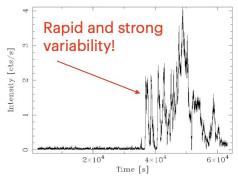
(above a few keV)

Internal 'quiescent' component

high-energy particles **interacting with the structure** surrounding the detectors and the detectors themselves

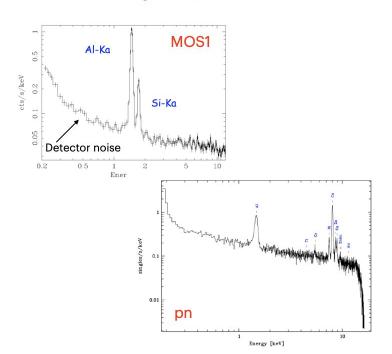

Filtering against high background periods

EPIC particle induced background


(above a few keV)

External 'flaring' component

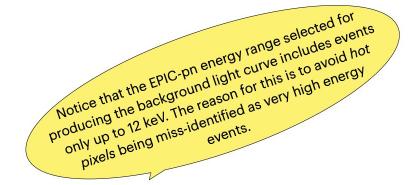
strong and rapid variability; currently attributed to **soft protons** $(E_p < a \text{ few 100 keV})$ likely organized in clouds populating the Earth's magnetosphere (above a few keV)


MOS2 observation badly affected by soft proton flares

MOS1 light curve badly affected by soft proton flares

Internal 'quiescent' component

high-energy particles **interacting with the structure** surrounding the detectors and the detectors themselves



Creation of a light curve above 10 keV

How to filter an EPIC event list for periods of high background flaring activity

Extract a **single event (i.e., pattern zero only)**, high energy light curve, from the event file to identify intervals of flaring particle background:

Select only good, single events with energies between 10 and 12 keV.

evselect table=pn.evt energycolumn=Pl expression='#XMMEA_EP && (PI>10000&&PI<12000) && (PATTERN==0)' withrateset=yes rateset="lcurve_sup10.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

maketimecolumn=If true, include a time column in the FITS table when creating a time series;

makeratecolumn=If true, produces a lightcurve containing a RATE, rather than a COUNTS column. An ERROR column is also produced.

Creation of a light curve above 10 keV

How to filter an EPIC event list for periods of high background *flaring* activity

MOS1

evselect table=**m1.evt** energycolumn=PI expression='#XMMEA_**EM** && **(PI>10000)** &&**(PATTERN==0)**' withrateset=yes rateset="lcurve_sup10.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

MOS2

evselect table=**m2.evt** energycolumn=Pl expression='#XMMEA_**EM** && **(PI>10000)** &&**(PATTERN==0)**' withrateset=yes rateset="lcurve_sup10.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

What are event patterns?

Event selection is performed on-board to allow the transmission of useful data only. Certain X-ray events are not valid because they are empty pixels, while others are expected to be split between pixels.

The SAS software allows these data to be reconstructed to a single value in the event list.

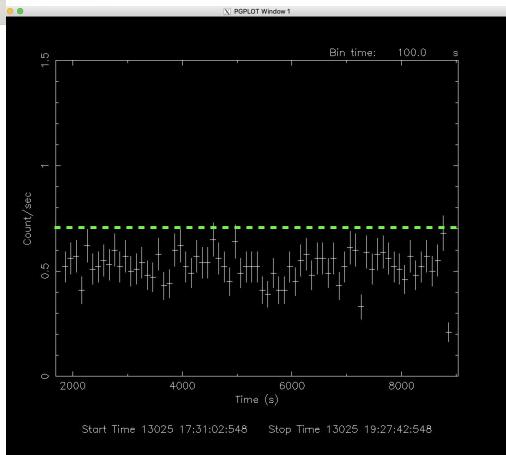
 Table 7: List of EPIC event patterns

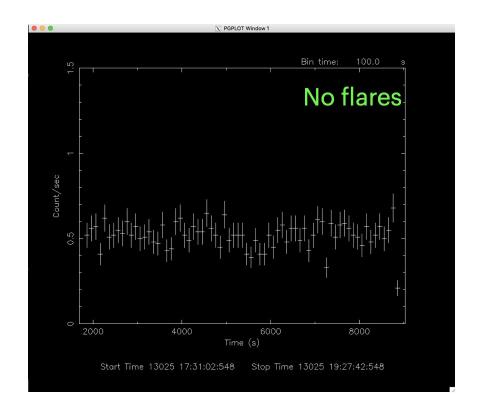
Camera	Mode		X-ray generated pattern										
		singles	doubles	triples	quadruples	higher							
MOS	imaging	0	1-4	5-8	9-12	13-25	26-312						
	timing	0	1				2,3						
pn	imaging	0	1-4	5-8	9-12		> 12						
	timing	0	1-4			5-12	> 12						

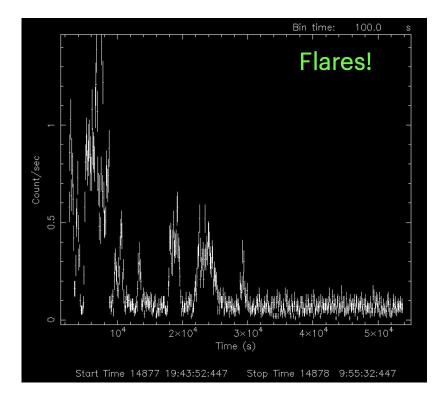
Calibrated patterns

	single	event			Х																
						٠.															
					x																
	A h 7																				
	donpte	pattern	•	•	X	•		•	•	Х	х		٠	Α		•	•	х	Х	٠	•
			٠		٠	٠				٠	٠			Х				٠	٠	٠	
				x					x												
	triplo	nattorn																			
	cripie	pattern			Х					Х					Х				Х		
				٠	٠	٠	•	٠	٠	٠	•	٠	٠	х	٠		٠	٠	х	٠	٠
					x					x											
		. 7																			
	quadrup	ole pattern	•	Х	Х	•	•			Х					Х				X		
			٠		٠	•		٠					•	х	m			m	х	٠	

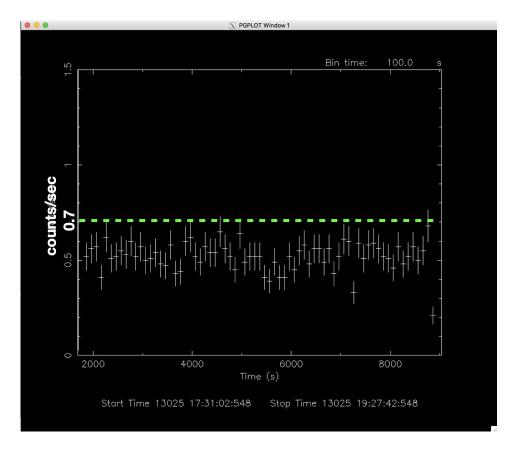
Figure 13: List of valid EPIC-pn patterns (cf. figure 12). Here "." marks a pixel without an event above threshold, "X" is the pixel with the maximum charge ("main pixel"), "x" is the pixel with a non-maximum charge, "m" is the pixel with the minimum charge. These 13 figures refer to the SAS PATTERN codes 0 (singles), 1-4 (doubles), 5-8 (triples) and 9-12 (quadruples), respectively. The RAWX co-ordinate is running rightward and the RAWY co-


andinata munnina unuvand


To visualize the produced lightcurve


```
torresi@login06:/blasco/users/torresi/LABX2025/3C33/pn — lcurve
curve 1.0 (xronos6.0)
Number of time series for this task[1]
Ser. 1 filename +options (or @file of filenames +options)[lcurve_sup10.lc]
Series 1 file 1:lcurve_sup10.lc
Selected FITS extensions: 1 - RATE TABLE;
Source ......
                                       Start Time (d) .... 13025 17:30:12.548
FITS Extension .... 1 - `RATE
                                       Stop Time (d) ..... 13025 19:27:28.859
No. of Rows .....
                                       Bin Time (s) ..... 100.0
Right Ascension ...
                                       Internal time sys.. Converted to TJD
Declination ......
                                       Experiment ..... XMM
Filter ..... Medium
Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes
Selected Columns: 3- Time; 1- Y-axis; 2- Y-error;
File contains binned data.
Name of the window file ('-' for default window)[-]
Expected Start ... 13025.72931189543 (days)
                                                 17:30:12:548 (h:m:s:ms)
Expected Stop .... 13025.81075068651 (days)
                                                 19:27:28:859 (h:m:s:ms)
Minimum Newbin Time 100.00000
                                     (s)
for Maximum Newbin No..
                                     71
Default Newbin Time is: 100.00000
                                     (s) (to have 1 Intv. of
                                                                   71 Newbins)
Type INDEF to accept the default value
Newbin Time or negative rebinning[100]
Newbin Time .....
Maximum Newbin No.
                                 71
Default Newbins per Interval are:
(giving
             1 Interval of
                                     71 Newbins)
Type INDEF to accept the default value
Number of Newbins/Interval[71]
Maximum of
                1 Intvs. with
                                        71 Newbins of
Name of output file[test.flc]
Oo you want to plot your results?[yes]
nter PGPLOT device[/xw]
    71 analysis results per interval
```

100% completed



Possible error! Disconnect from login 06 and reconnect

PGPLOT /xw: cannot connect to X server [localhost:12.0]
To plot vs. Time (s), please enter
PGPLOT file/type:

Selection of **good time intervals**

Generation of a cleaned event file

pn

evselect table=pn.evt expression='#XMMEA_EP && (PI>150) && (GTI(good_bkg.gti,TIME))' withfilteredset=yes

keepfilteroutput=yes filteredset=pn_new.evt updateexposure=yes cleandss=yes writedss=yes

filteredset= the name of the file to which the filtered event list is to be written. If this parameter is set, then **keepfilteroutput** is automatically set to true.

updateexposure= update exposure information in event lists (keywords LIVETIME, LIVETINN, ONTIME, and ONTIMEnn) and in spectrum files (keyword EXPOSURE).

cleandss= controls the use of data subspace cleaning, which deletes components from the data subspace which select no events from the event list.

writess= controls the writing of data subspace information to the output data files.

Generation of a cleaned event file

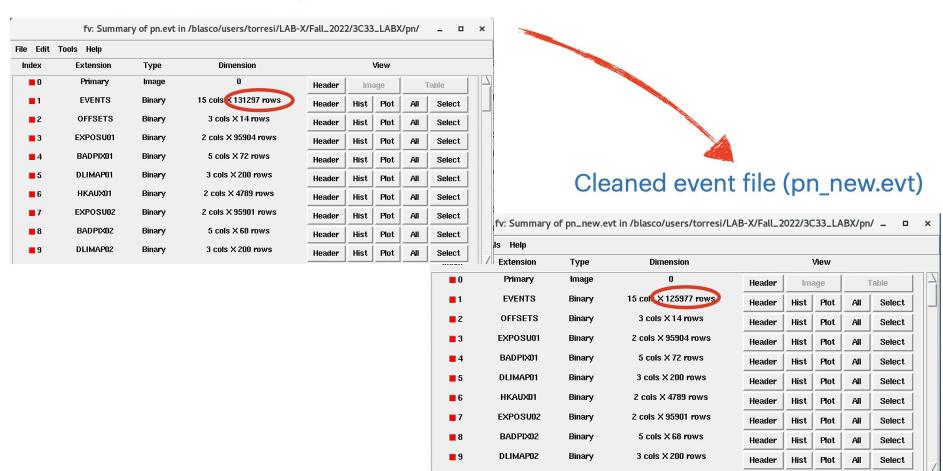
pn

evselect table=**pn.evt** expression='#XMMEA_**EP** && (PI>150) && (GTI(good_bkg.gti,TIME))' withfilteredset=yes

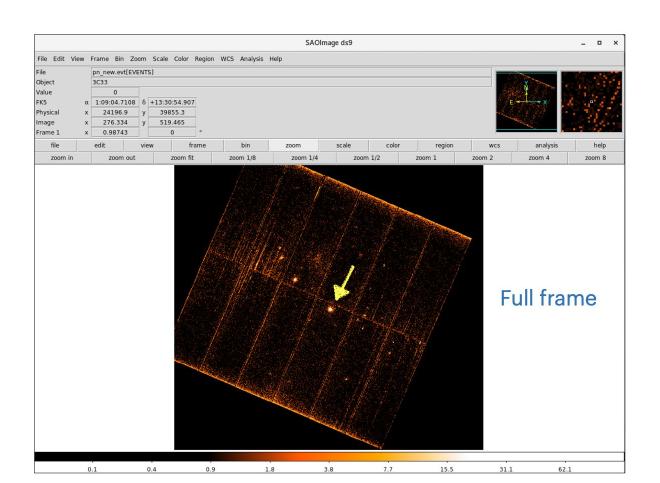
keepfilteroutput=yes filteredset=**pn_new.evt** updateexposure=yes cleandss=yes writedss=yes

Select All Invert	■ TIME D s Modify	RAWX I pixel Modify	RAWY I pixel Modify	DETX I 0.05 arcsec Modify	DETY I 0.05 arcsec Modify	J 0.05 arcsec Modify	J 0.05 arcsec Modify	PHA I channel Modify	■ PI I eV Modify	■ FLAG J Modify	■ PATTERN B Modify
1	1.910949802434E+08	50	110	7331	-8630	37610	31914	30	151	0	0
2	1.910936738810E+08	28	142	-9935	3770	16856	27317	24	151	0	0
3	1.910987199062E+08	20	183	-11361	-2593	18051	33727	24	151	0	0
4	1.910968628259E+08	35	24	11477	-15702	44206	36781	30	151	65536	0
5	1.910990361903E+08	29	187	-10571	-2284	18655	33132	24	151	0	0
6	1.910961221517E+08	62	98	-7817	-9592	24065	38764	31	151	2097160	0
7	1.910970038855E+08	1	133	3105	4529	28542	21483	26	151	4	0
8	1.910974374096E+08	62	45	-7897	-13947	25707	42799	33	151	2097160	0
9	1.910945815748E+08	48	181	-11601	516	16606	30964	22	151	0	0
10	1.910967549282E+08	15	169	-14269	1567	13740	31049	25	151	0	0
11	1.910971991752E+08	56	151	3922	3037	29881	22532	26	151	0	0
12	1.910989785826E+08	35	162	5695	2135	31866	22663	24	151	0	0
13	1.910968081495E+08	57	186	-13624	-2308	15859	34356	22	151	0	0
14	1.910990163098E+08	48	14	-6206	14311	16131	16159	30	151	0	0
15	1.910954398068E+08	46	116	-16806	5925	9691	28042	27	151	0	0
16	1.910962318820E+08	21	160	-5831	-4511	23889	33312	28	151	0	0
17	1.910999689040E+08	1	167	-2130	-3895	27049	31288	31	151	4	0
18	1.910993828217E+08	57	134	-17669	4455	9477	29733	26	151	0	0
19	1.910989936606E+08	60	164	-12546	1956	15170	30012	22	151	0	0
20	1.910960863435E+08	41	151	-14993	-5262	15764	37611	27	151	0	0
21	1.910968742872E+08	43	185	12176	-2456	39631	24330	24	151	0	0
22	1.910997870684E+08	51	199	2000	-1237	29798	27218	30	151	0	0
23	1.910989410890E+08	44	177	-14728	-3097	15155	35516	22	151	0	0
24	1.910960325198E+08	37	194	-9900	-1697	19041	32328	24	151	0	0
25	1.910967498674E+08	33	154	11287	-5002	39817	27021	26	151	0	0
26	1.910957214857E+08	57	167	-13697	-3921	16427	35868	23	151	0	0

Generation of a cleaned event file


MOS 1

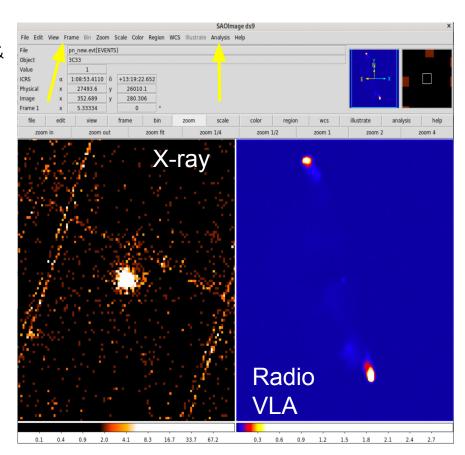
evselect table=**m1.evt** expression='#XMMEA_**EM** && (PI > 150) && (GTI(good_bkg.gti,TIME))' withfilteredset=yes keepfilteroutput=yes filteredset=**mos1_new.evt** updateexposure=yes cleandss=yes writedss=yes

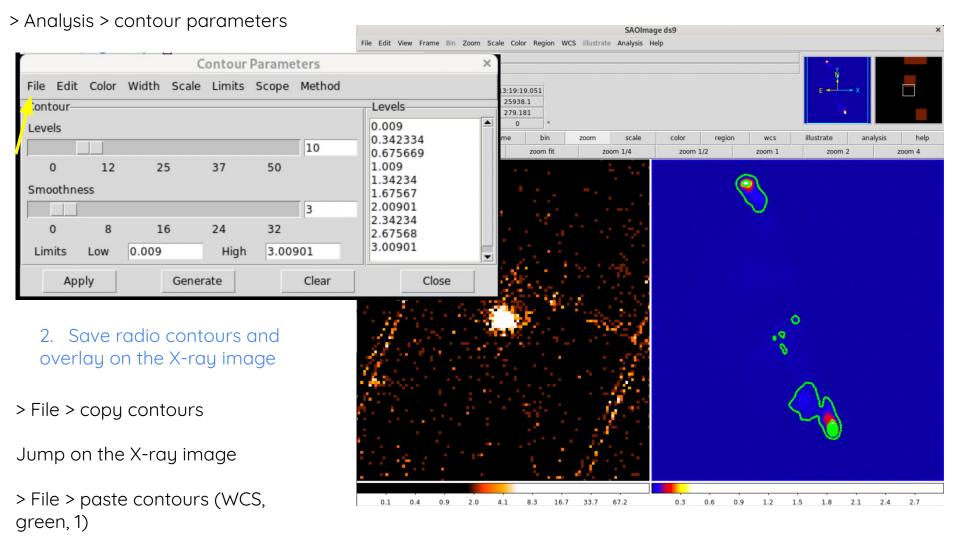

MOS 2

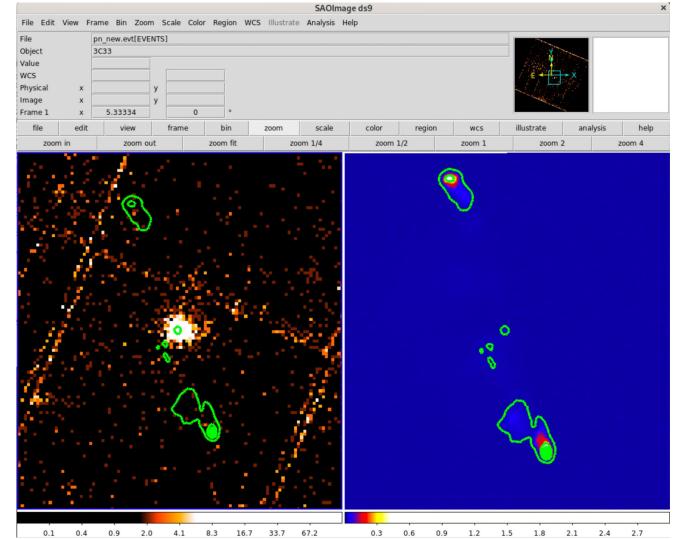
evselect table=**m2.evt** expression='#XMMEA_**EM** && (PI > 150) && (GTI(good_bkg.gti,TIME))' withfilteredset=yes keepfilteroutput=yes filteredset=**mos2_new.evt** updateexposure=yes cleandss=yes writedss=yes

Raw event file (pn.evt)

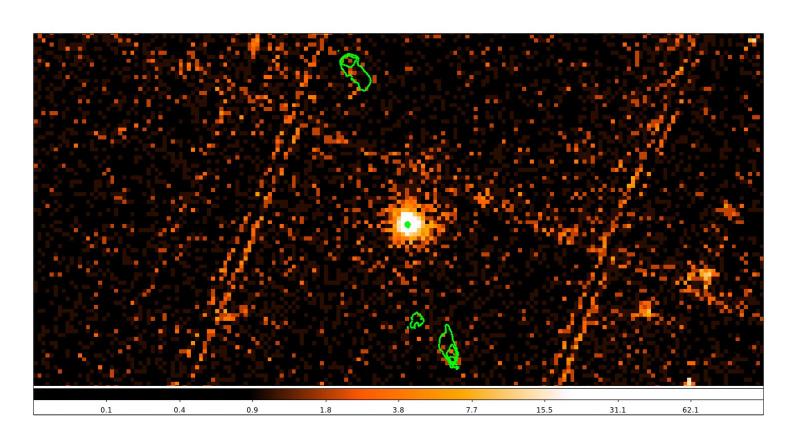
> ds9 pn_new.evt &


Overlay of radio contours

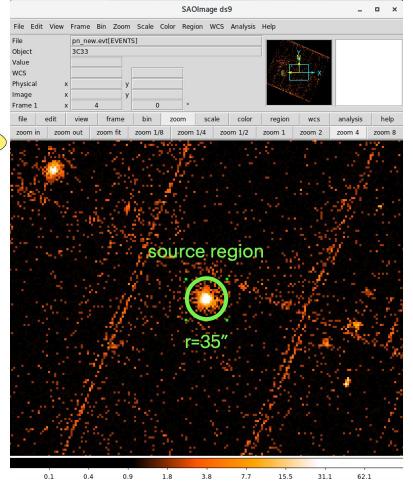

1. Open the radio image


- > ds9 pn_new.evt 3C_33_I_1.5GHz_lbs2003.fits.gz&
- > zoom in (for radio)
- > color b (for radio)
- > scale log (for X-ray)
- > color heat (for X-ray)
- > bin 16 (for X-ray)
- > Frame -> Match frames -> WCS

On the radio image: Use the *right mouse button* to adjust the image until you're happy with the result.

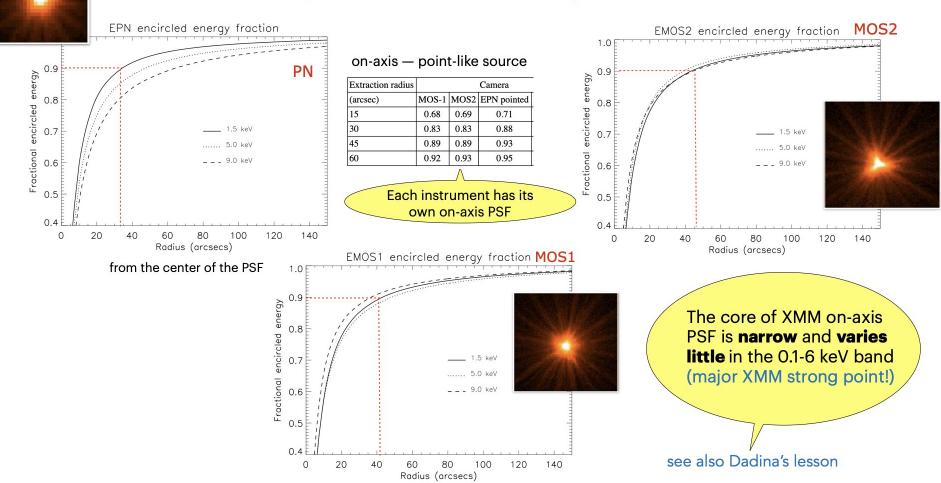

> Analysis > contour parameters

Zoomed image with radio (VLA 5GHz) contours overlaid


Source extraction region

Display the cleaned image with ds9

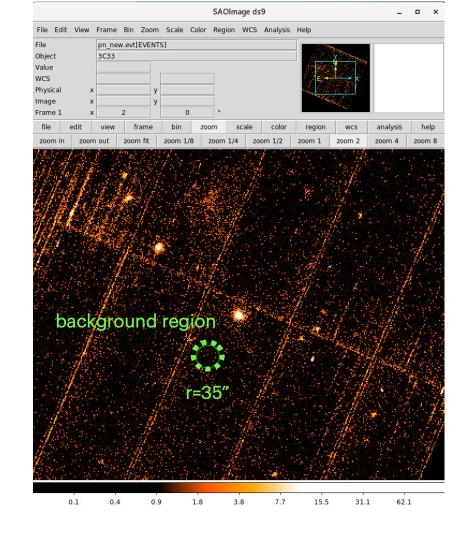
http://ds9.si.edu/doc/user/binning/index.html


> ds9 pn_new.evt &

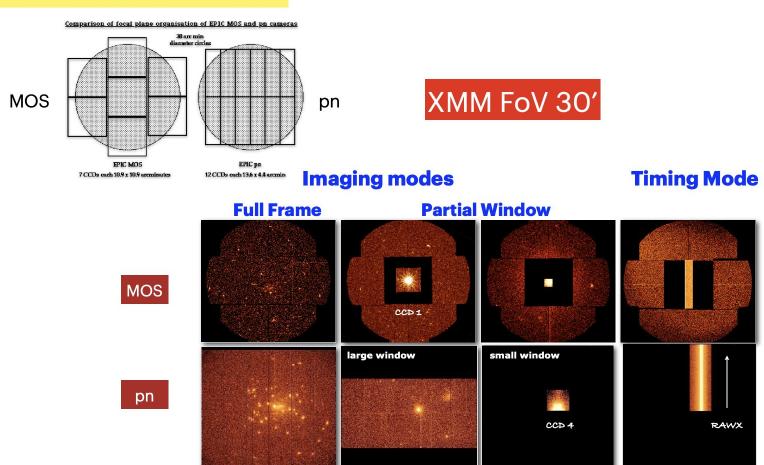
- > scale log
- > bin (block 2, 4, ...)
- > Region
- > save region
- > file format 'ds9'
- > coordinates 'physical'
- > source.reg

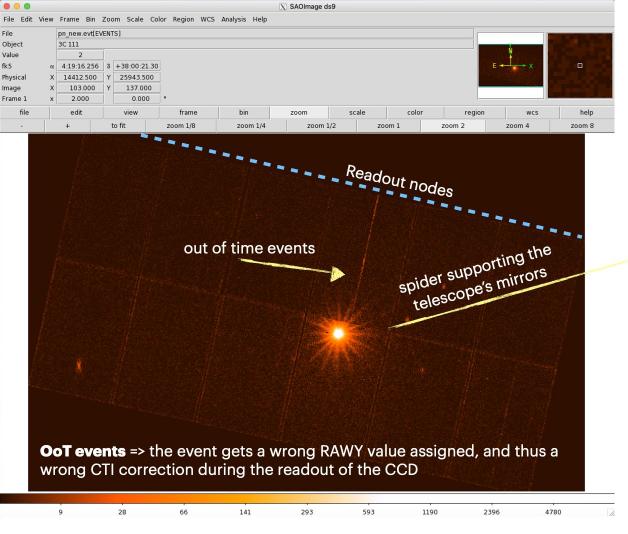
Fraction encircled energy

Fraction of photons contained within a certain angular radius

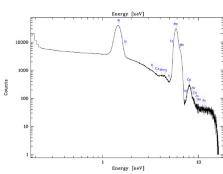


Background extraction region

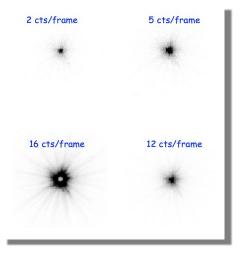

Display the cleaned image with ds9

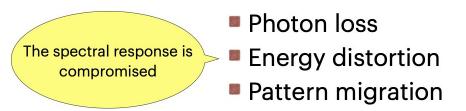

ds9 pn_new.evt &

- > scale log
- > bin (block 2, 4, ...)
- > Region
- > save region
- > file format 'ds9'
- > coordinates 'physical'
- > back.reg



EPIC Science Modes


OoT events broaden spectral features in a systematic way


Photon PILE-UP

https://www.cosmos.esa.int/web/xmm-newton/sas-thread-epatplot

Arrival of two or more independent photons at nearby pixels that are erroneously read as one single event (whose energy is the sum of the energies of the individual photons) Jethwa et al. (2015)

Many photons arrive almost at the same time in the core of the PSF which results influenced by pile-up

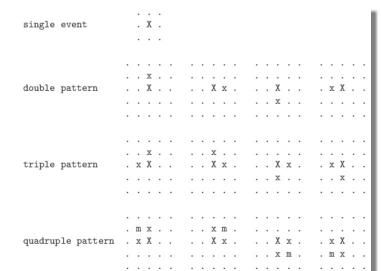


Figure 13: List of valid EPIC-pn patterns (cf. figure 12). Here "." marks a pixel without an event above threshold, "X" is the pixel with the maximum charge ("main pixel"), "x" is the pixel with a non-maximum charge, "m" is the pixel with the minimum charge. These 13 figures refer to the SAS PATTERN codes 0 (singles), 1-4 (doubles), 5-8 (triples) and 9-12 (quadruples), respectively. The RAWX co-ordinate is running rightward and the RAWY co-

$\frac{\text{MOS}}{\text{[1 pixel = 1.1"]}}$ (central CCD; pixels)	Time res- olution	$\begin{array}{c} \textbf{Live} \\ \textbf{time}^1 \\ [\%] \end{array}$	$egin{array}{ll} { m Max.} & { m count} \ { m rate}^2 \ { m diffuse}^3 \ { m (total)} \ { m [s}^{-1} { m]} \end{array}$	Max. count rate ² (flux) point source $[s^{-1}]$ ($[mCrab]^4$)
Full frame (600×600)	$2.6 \mathrm{\ s}$	100.0	150	0.50 (0.17)
Large window (300×300)	$0.9 \mathrm{\ s}$	99.5	110	1.5 (0.49)
Small window (100×100)	$0.3 \mathrm{\ s}$	97.5	37	4.5 (1.53)
Timing uncompressed (100×600)	$1.75~\mathrm{ms}$	100.0	N/A	100 (35)
(amos on 1 CCD, pivola)	m:	Live	Max. count	Max. count $rate^2$
pn (array or 1 CCD; pixels) [1 pixel = 4.1"]	Time res- olution	\mathbf{time}^1 [%]	${f rate^2~diffuse^3} \ {f (total)~[s^{-1}]}$	$({ m flux})~{ m point~source} \ [{ m s}^{-1}]~([{ m mCrab}]^4)$
[1 pixel = 4.1"] Full frame ⁵ (376×384)				` /-
[1 pixel = 4.1"]	olution	[%]	$({ m total}) \ [{ m s}^{-1}]$	$[s^{-1}]$ ($[mCrab]^4$)
[1 pixel = 4.1"] Full frame ⁵ (376×384)	olution 73.4 ms	[%] 99.9	$\frac{\text{(total) }[\mathbf{s}^{-1}]}{1000(\text{total})}$	$[s^{-1}]$ ($[mCrab]^4$) 2 (0.23)
[1 pixel = 4.1"] Full frame ⁵ (376×384) Extended full frame ^{5,6} (376×384)	73.4 ms 199.1 ms	[%] 99.9 100.0	(total) $[s^{-1}]$ 1000(total) 370	$[s^{-1}]$ ($[mCrab]^4$) $2 (0.23)$ $0.7 (0.09)$
[1 pixel = 4.1"] Full frame ⁵ (376×384) Extended full frame ^{5,6} (376×384) Large window (198×384)	73.4 ms 199.1 ms 47.7 ms	99.9 100.0 94.9	(total) $[s^{-1}]$ 1000(total) 370 1500	$[s^{-1}]$ ($[mCrab]^4$) 2 (0.23) 0.7 (0.09) 3 (0.35)

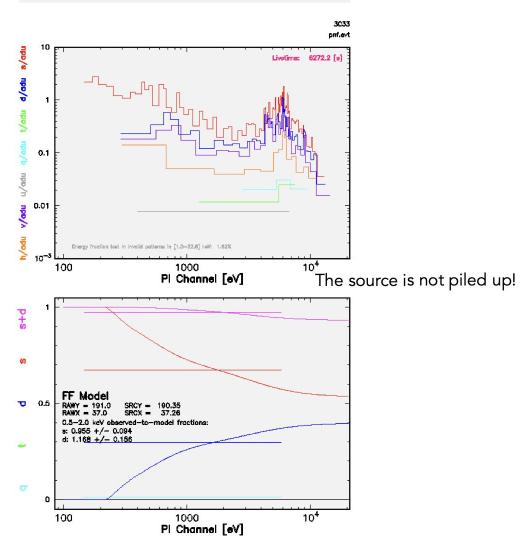
Maximum count rate for point sources, above which the observing mode enters a regime of significant pile-up.

Check for the presence of pile-up

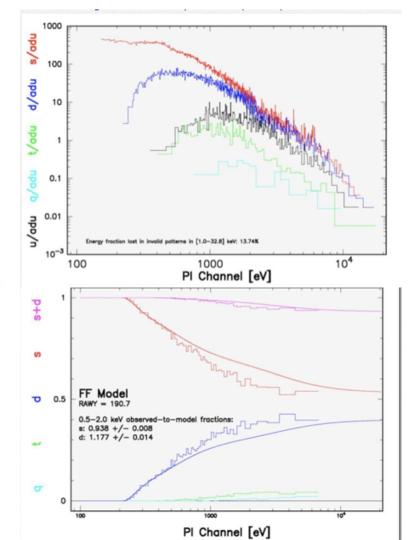
Diagnostic tool for pileup: epatplot

evselect table=**pn_new.evt** withfilteredset=yes filteredset=**pnf.evt** keepfilteroutput=yes expression="((X,Y) IN circle (25864.501,24541.104,700.00011))"

epatplot set=pnf.evt device="/CPS" plotfile="pnf_pat.ps" or device="/GIF" plotfile="pnf_pat.gif"


```
[torresi@login06]pn>export SAS CCF='/blasco/users/torresi/LAB-X/Fall 2022/3C33 LABX/evt/ccf.cif'
[torresi@login06]pn>epatplot set=pnf.evt device="/CPS" plotfile="pnf pat.ps"
epatplot:- Executing (routine): epatplot set=pnf.evt modifvinset=ves sigma=3 withflag=ves xaxisadu=no device=/CPS o
utdir=./ plotfile=pnf pat.ps useplotfile=yes withqdp=no withdetxy=no withsrcxy=yes outmaskname=flag0 map ##.dat wit
houtputmask=no backgroundset=bkg events.fits withbackgroundset=no backscal=1 usermode=0 withusermode=no userrawv=19
0 withuserrawy=no ccdlimits='1 64 1 200 1 12' plotxrange='0 0' plotyrange='0 0' pileupnumberenergyrange='500 2000'
-w 1 -V 4
epatplot:- epatplot (epatplot-1.22) [xmmsas 20211130 0941-20.0.0] started: 2022-11-16T10:57:22.000
epatplot:- epatplot 1.22 is running...
epatplot:-
epatplot:-
epatplot:- 0.6375 0.3228 0.0176 0.0220
epatplot:-
                                                                     Epatplot compares the ratios of single- and
epatplot:- 0.5-2.0 keV observed-to-model fractions:
                                                                   double-events with standard values to check if
epatplot:- s: 0.955 +/- 0.094
                                d: 1.168 +/- 0.156
                                                                        there is a deviation (hence, pile-up)
enatolot
epatplot:- PostScript output written to file pnf pat.ps
epatplot:- epatplot (epatplot-1.22) [xmmsas 20211130 0941-20.0.0] ended:
                                                                              2022-11-16T10:57:23.000
[torresi@login06]pn>gv pnf pat.ps&
```

How to visualize .ps of .gif files


gv **pnf_pat.ps**

evince pnf_pat.ps

gimp **pnf_pat.gif**

While, in this case, the source is piled up

Spectrum extraction

pn

evselect table=pn_new.evt withspectrumset=yes spectrumset=source_spectrum.fits energycolumn=Pl spectralbinsize=5 withspecranges=yes specchannelmin=0 specchannelmax=20479 expression='(FLAG==0) && (PATTERN<=4) && ((X,Y) IN circle (27874.528,26645.58,699.99999))'

source.reg

spectralbinsize= binning factor for spectral creation (size of each bin in instrumental eV) **specchannelmin**= the minimum channel number to consider for spectrum creation **specchannelmin**= the maximum channel number to consider for spectrum creation

Background extraction

pn

evselect table=pn_new.evt withspectrumset=yes spectrumset=back_spectrum.fits energycolumn=PI spectralbinsize=5 withspecranges=yes specchannelmin=0 specchannelmax=20479 expression='(FLAG==0) && (PATTERN<=4) && ((X,Y) IN circle (25864.501,24541.104,700.00011))'

back.reg

Spectrum extraction

MOS 1

evselect table=mos1_new.evt withspectrumset=yes spectrumset=source_spectrum.fits energycolumn=PI spectralbinsize=15 withspecranges=yes specchannelmin=0 specchannelmax=11999 expression='(FLAG==0) && (PATTERN<=12) && ((X,Y) IN circle (28090.5,24221.5,775.48791))'

MOS 2

evselect table=mos2_new.evt withspectrumset=yes spectrumset=source_spectrum.fits energycolumn=PI spectralbinsize=15 withspecranges=yes specchannelmin=0 specchannelmax=11999 expression='(FLAG==0) && (PATTERN<=12) && ((X,Y) IN circle (28090.5,24221.5,775.48791))'

Background extraction

MOS 1

evselect table=mos1_new.evt withspectrumset=yes spectrumset=back_spectrum.fits energycolumn=PI spectralbinsize=15 withspecranges=yes specchannelmin=0 specchannelmax=11999 expression='(FLAG==0) && (PATTERN<=12) && ((X,Y) IN circle (25864.501,24541.104,700.00011))'

MOS 2

evselect table=mos2_new.evt withspectrumset=yes spectrumset=back_spectrum.fits energycolumn=PI spectralbinsize=15 withspecranges=yes specchannelmin=0 specchannelmax=11999 expression='(FLAG==0) && (PATTERN<=12) && ((X,Y) IN circle (25864.501,24541.104,700.00011))'

Backscale

The BACKSCALE task calculates the area of a source region used to make a spectral file.

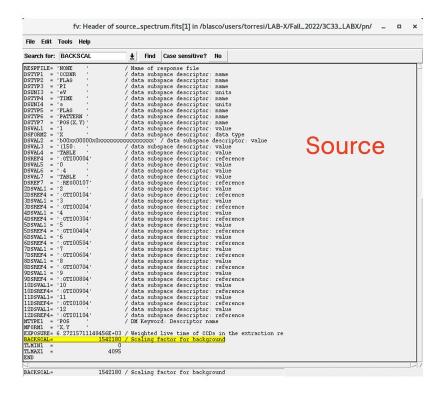
This task takes into account any bad pixels or chip gaps and writes the result into the BACKSCAL keyword of the SPECTRUM table

The final value is:

AREA = GEOMETRIC AREA - CCD GAPS - BAD PIXELS

pn

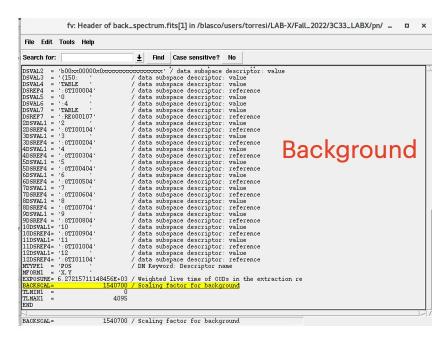
backscale spectrumset=**source_spectrum.fits** badpixlocation=**pn_new.evt** backscale spectrumset=**back_spectrum.fits** badpixlocation=**pn_new.evt**


MOS 1

backscale spectrumset=**source_spectrum.fits** badpixlocation=**mos1_new.evt** backscale spectrumset=**back_spectrum.fits** badpixlocation=**mos1_new.evt**

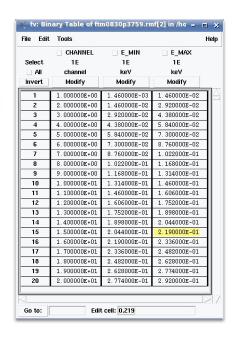
MOS 2

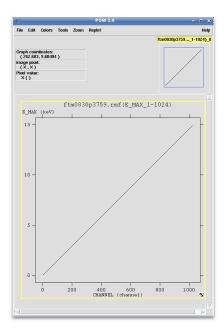
backscale spectrumset=**source_spectrum.fits** badpixlocation=**mos2_new.evt** backscale spectrumset=**back_spectrum.fits** badpixlocation=**mos2_new.evt**


Backscale

The BACKSCALE task calculates the area of a source region used to make a spectral file.

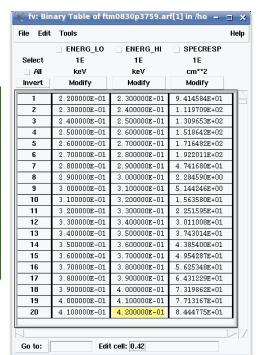
This task takes into account any bad pixels or chip gaps and writes the result into the BACKSCAL keyword of the SPECTRUM table

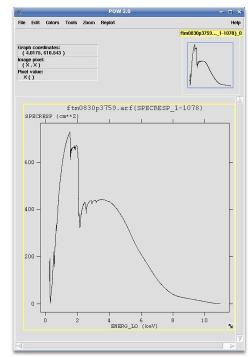

The final value is: AREA= GEOMETRIC AREA-CCD GAPS-BAD PIXELS


Redistribution Matrix File (RMF)

rmfgen spectrumset=source_spectrum.fits rmfset=pn.rmf

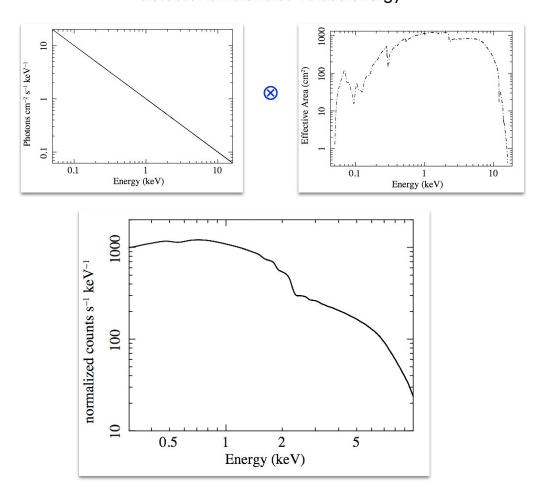
The RMF associates to each instrument channel (I) the appropriate photon energy (E)




Ancillary Response File (ARF)

arfgen spectrumset=source_spectrum.fits arfset=pn.arf withrmfset=yes rmfset=pn.rmf badpixlocation=pn_new.evt detmaptype=psf (for point sources; for extended sources -> flat)

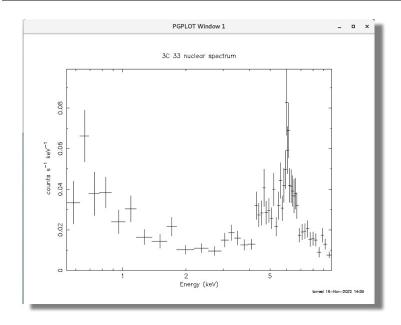
The ARF includes information on the effective area, filter transmission and any additional energy-dependent efficiencies, i.e. the efficiency of the instrument in revealing photons



^{**} arfgen: fatal error (NoCifSpecified), `/prod_oasbo/sas/xmmsas_20210317_1624/evt' is neither the name of a directory nor the name of a CIF >export SAS_CCF='/blasco/users/gruppoXX/datadir/evt/ccf.cif'

The combination of RMF and ARF produces the input spectrum weighted by telescope area and detector efficiencies versus energy

Grouping

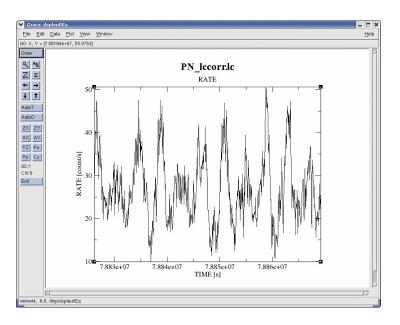

In order to apply the χ^2 statistics (Gaussian distribution) you need to have at least 25 counts in each bin of your spectrum. Otherwise Cash statistics (Poisson distribution) is preferred (see also Statistics Tutorial).

grppha source_spectrum.fits pn_25.grp comm="chkey RESPFILE pn.rmf & chkey ANCRFILE pn.arf & chkey BACKFILE back_spectrum.fits & group min 25 & exit"

Grouping

In order to apply the χ^2 statistics (Gaussian distribution) you need to have at least 25 counts in each bin of your spectrum. Otherwise Cash statistics (Poisson distribution) is preferred (see also Statistics Tutorial).

grppha source_spectrum.fits pn_25.grp comm="chkey RESPFILE pn.rmf & chkey ANCRFILE pn.arf & chkey BACKFILE back_spectrum.fits & group min 25 & exit"


see XSPEC tutorial

Light curve

A light curve is the plot of the flux of a source vs time.

It shows if and how the flux of the source varies during a certain time series.

The variability of a source can manifest on different time scales.

https://www.cosmos.esa.int/web/xmm-newton/sas-thread-timing

source+background lightcurve

pn

evselect table=**pn_new.evt** energycolumn=PI expression='#XMMEA_**EP**&&(**PATTERN<=4**)&& ((X,Y) IN circle(25910.5,25870.5,400)&& (PI in **[2000:10000]**))' withrateset=yes rateset="**PN_source_lightcurve_raw.lc**" timebinsize=**100** maketimecolumn=yes makeratecolumn=yes

MOS1

evselect table=mos1_new.evt energycolumn=PI expression='#XMMEA_EM&&(PATTERN<=12)&& ((X,Y) IN circle(25910.5,25870.5,400)&& (PI in [2000:10000]))' withrateset=yes rateset="MOS1_source_lightcurve_raw.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

The longer is the temporal bin the lower is the resolution but the higher is the S/N.

MOS 2

evselect table=mos2_new.evt energycolumn=PI expression='#XMMEA_EM&&(PATTERN<=12)&& ((X,Y) IN circle(25910.5,25870.5,400)&& (PI in [2000:10000]))' withrateset=yes rateset="MOS2_source_lightcurve_raw.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

background lightcurve

pn

evselect table=pn_new.evt energycolumn=PI expression='#XMMEA_EP&&(PATTERN<=4)&& ((X,Y) IN circle(25910.5,25870.5,400)&& (PI in [2000:10000]))' withrateset=yes rateset="PN_light_curve_background_raw.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

MOS 1

evselect table=mos1_new.evt energycolumn=PI expression='#XMMEA_EM&&(PATTERN<=12)&& ((X,Y) IN circle(25910.5,25870.5,400)&& (PI in [2000:10000]))' withrateset=yes rateset="MOS1_light_curve_background_raw.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

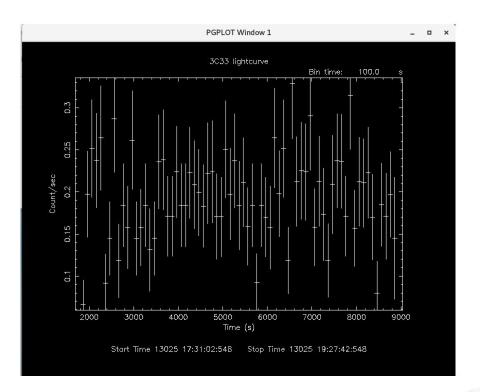
MOS 2

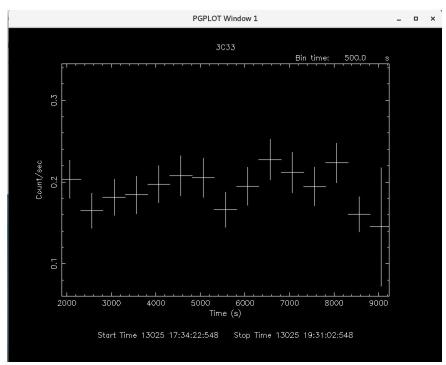
evselect table=mos2_new.evt energycolumn=Pl expression='#XMMEA_EM&&(PATTERN<=12)&& ((X,Y) IN circle(25910.5,25870.5,400)&& (Pl in [2000:10000]))' withrateset=yes rateset="MOS2_light_curve_background_raw.lc" timebinsize=100 maketimecolumn=yes makeratecolumn=yes

source-background lightcurve: epiclccorr

pn

epiclccorr srctslist=PN_source_lightcurve_raw.lc eventlist=pn_new.evt outset=PN_lccorr.lc bkgtslist=PN_light_curve_background_raw.lc withbkgset=yes applyabsolutecorrections=yes

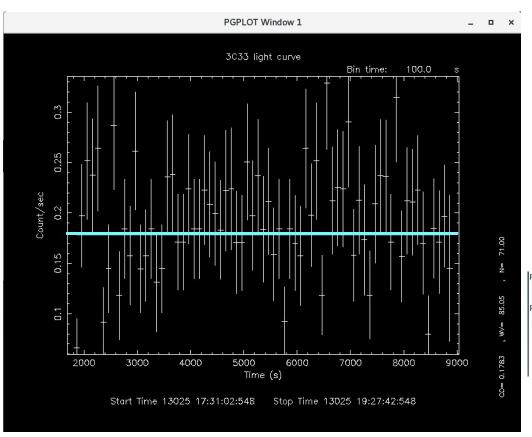

MOS 1


epiclccorr srctslist=MOS1_source_lightcurve_raw.lc eventlist=mos1_new.evt outset=MOS1_lccorr.lc bkgtslist=MOS1_light_curve_background_raw.lc withbkgset=yes applyabsolutecorrections=yes

MOS 2

epiclccorr srctslist=MOS2_source_lightcurve_raw.lc eventlist=mos2_new.evt outset=MOS2_lccorr.lc bkgtslist=MOS2_light_curve_background_raw.lc withbkgset=yes applyabsolutecorrections=yes

source-background lightcurve: **Curve**



bin=100

The longer is the temporal bin the lower is the resolution but the lower is the S/N.

bin=500

source-background lightcurve: | curve

$$\chi_{\nu}^{2} = \frac{1}{\nu} \sum_{i=1}^{n} \frac{\left(c_{i} - \langle c \rangle\right)^{2}}{\sigma_{i}^{2}}$$

ciobserved counts in every temporal bin i;

σ Poissonian error;

<c> average count during the observation;

v=n-1 degrees of freedom;

```
PLT> mo con

1 CO: VAL( 1.000 ), SIG( 0.000 ), PLO( 0.000 ), PHI( 0.000 )?

PLT> fit

Fitting group 2, from 1.688E+03 to 9.038E+03

Fitting 71 points in a band of 71.

1.00000000

(-3) W-VAR= 85.07

(-4) W-VAR: 85.05

0.178321302
```

Compute the probability of the result being due to chance

https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html

Calculate probability from X^2 and d

One of the most common chi-square calculations is determining, given the measured X^2 value for a set of experiments with a degree of freedom d, the probability of the result being due to chance. Enter the X^2 and d values in the boxes below, press the **Calculate** button, and the probability will appear in the O box.

Given
$$X^2 = 85.05$$
 and $d = 70$ (71-1)

Calculate

The chance probability, Q , is:

1-0.192=0.808 the source is variable at ~80% (the acceptance threshold for variability id 99.9%).

Python commands

```
>>> from scipy.stats import chi2
# Insert your values
>>> chi2 value = 80.05 # <-- substitute with your chi<sup>2</sup>
\rightarrow dof = 70 # <-- substitute with your dof (N - 1)
>>> p value = 1 - chi2.cdf(chi2 value, df=dof)
print("p-value =", p value)
print("Significance (1 - p) =", 1 - p value)
```