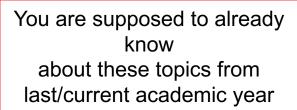
Multiwavelength Astrophysics Laboratory:

High-energy (X-ray) module

C. Vignali, P. Grandi, E. Torresi, M. Dadina, S. Marchesi, E. Bronzini


A few notes before starting

- ➤ Differently from the other two labs (optical and radio/mm), students will be in contact with several staff researchers and a PhD student (tutor). You will receive a significant amount of inputs and suggestions by different people then you will do your own, motivated choices and you will be treated as you were part of a research group. This is a fundamental experience if your goal is to do research in your career.
- ➤ The high-energy/X-ray module is thought and 'built' differently from the other labs. Tutorials are still present, but organized in such a way that students should primarily listen and understand how to reduce and analyze X-ray data without necessarily typing commands on their own simultaneously with the teacher.
- ➤ Commands can be found in slides/on-line threads/tutorials/notebooks; it is not mandatory to remember specific commands but to understand the principles of the analysis and the fundamental steps.
- During their own data analysis, to ease and speed-up the process, students are suggested to write in a file all of the commands, including a description of what they are doing. This is helpful to (i) remember the fundamental steps of the analysis for the final powerpoint presentation and to (ii) repeat procedures, if needed, using a simple 'cut & paste'.

X-ray laboratory module: Lessons + Tutorials. I

Useful: review some AGN lessons (on Virtuale)

- AGN classification/demography/Unified scheme lesson 3
- AGN X-ray spectral components lesson 4
- Radio-jetted AGN (RL-AGN) lesson 5
- AGN evolution and AGN-galaxy coevolution lesson 10
- Feedback in AGN lesson 13

Available on the Lab website https://indico.ict.inaf.it/event/3432/

- X-ray surveys and AGN evolution (S. Marchesi)
- AGN spectral energy distribution and AGN-galaxy coevolution (L. Barchiesi)
- AGN feedback: multi-wavelength indications and X-ray winds/outflows (E. Bertola)
- Radio-loud AGN (P Grandi)

First week of high-energy lab

- Fundamental parameters of X-ray telescopes and detectors
- Pills of statistics and applications to X-rays
- Chandra/XMM/XSPEC/Fermi tutorials
- Presentation of data handling projects

NEWS: not all students will attend all the lessons of the first week

X-ray laboratory module: Lessons + Tutorials. II

I week

- Monday, 17.11 (9–11, room M, all students):
 - o 9:15-9:30: C. Vignali: *Introduction to the high-energy module*
 - 9:30–10:40: M. Dadina: Fundamental parameters of X-ray telescopes and detectors
 - 10:40–11: Random assignment of the exercises to the groups
- Tuesday, 18.11 (12-14, room M, all students):
 - o 12-13:15: C. Vignali: *Pills of Statistics*
- Wednesday, 19.11 (9-11):
 - o 9:15-11: C. Vignali: *Chandra tutorial* (room M, Chandra groups)
 - o 9:15-11: E. Bronzini: installation of Fermi software (seminar room INAF/OAS@CNR, Fermi groups)
 - o 9:15-11: E. Torresi: XMM-Newton tutorial (Aula Sollima, INAF-OAS, Via Gobetti 93/3, XMM groups)
- Thursday, 20.11 (14–18):
 - 14:15–16: Installation of Virtual Machines (room M: Chandra groups + XMM groups)
 - 16-18: C. Vignali: XSPEC (spectral analysis) tutorial (room M: Chandra groups + XMM groups)
 - o 14:15–16: P. Grandi: Introduction to Fermi (seminar room INAF/OAS@ CNR, Fermi groups)
 - 16–18: E. Bronzini: Jupiter notebook for Fermi data analysis (seminar room INAF/OAS@CNR, Fermi groups)
- Friday, **21.11** (9–13):
 - 9-11:30: C. Vignali, S. Marchesi: Presentation of data-analysis exercises (room M, Chandra groups)
 - 9-11:30: E. Torresi, M. Dadina: Presentation of data-analysis exercises (room 214, XMM groups)
 - o 9–11:30: P. Grandi, E. Bronzini: *Presentation of data-analysis exercises* (seminar room INAF/OAS@CNR, Fermi groups)
 - 11:45–13: Start of the high-energy laboratory (All)

X-ray laboratory module: Lessons + Tutorials. III

Software

- We will give you indications on the installation of Virtual Machines on your laptops with all the relevant high-energy software already installed.
- For those of you who will experience problems with this installation, we will provide excess to remote servers with all the relevant high-energy software already installed.

X-ray laboratory: groups and projects. I

Group	Last Name	First Name	10	Delpoggetto	Ettore	20	Colombari	Alice
1	Cussini	Sofia	10	Pucci	Daniele	20	Scattolin	Daniele
1	Calaon	Erika	10	Redana	Davide	20	Touhami	Samy
1	Venturi	Daphne	11	Santucci	Lucia	21	Castro	Juan
2	Bono	Chiara	11	Triozzi	Agnese	21	Khalil	Jasmine
2	Falzoni	Federico	11	Patil	Shritej	21	Yipeng	Yao
2	Rosetti	Noemi	12	Caiozzo	Nilo	22	Jiiya	Yao
3	Rosania	Maria Chiara	12	Sangermano	Alessio	22	Chinchwadkar	Rohit
3	Ferruzzi	Fosca	12	Parente	Lorenzo	22	Gebreel	Yosussef
3	Lunardi	Caetano	13	Veggetti	Valentina	23	Langeroudi	Soroush Ataee
4	Coppola	Alessandro	13	Singh	Gagandeep	23	Noroozi	Samane
4	Di Prima	Adelina	13	Bahr	Yousra	23		Elaheh
4	Pavone	Giuseppe Loris	14	Kizhakkot	Arjun		Khodaei	
5	Gozzi	Samuele	14	Das	Khushbu	24	Bhagat	Ankit Kumar
5	Centanni	Matteo	14	Patterson	Claire Claude	24	Kalisetty	Mohit Narayan
5	Palmieri	Luca	15	Veeramuthu	Vineeth	24	Chowdhury	Nibedita
6	Pepe	Giulia	15	George	Abel John	25	Chavan	Om Mohan
6	Salvemini	Nicola	15	Jaison	Aswin	25	Sinha	Mayank
6	Bellomare	Giulia	16	Kerdikoshvili	Nino	25	Mahalim	Yash
7	Caccese	Pietro	16	Markoudakis	Ioannis			
7	Bonetti	Sofia	16	Karakotia	Christina			
7	Ruozzi	Luca	17	Kazemlee	Tina	75 students → 25 gro		
8	Benedetti	Camilla	17	Gialanella	Francesca	13		_
8	Sanseverinati	Sara	17	Calazans	Victor	of 3 students each		
8	Pucci	Simone	18	Poojari	Yash Ravindra			
9	Beyaz	Canday	18	Sera	Giovanni			
9	Azar	Amin	18	Daniela	Alvisi			
9	Masoudnezhad	Amirhossein	19	Ahmed	Aftab			

19

19

Movaffaghi

Sida

Yasaman

Abenezer Tesfaye

5 groups each

X-ray laboratory: groups and projects. II

Situation as a.a. 2024-25

Test	Target	Goal	Data
1	Pictor A	Nucleus [Eastern Lobe; magnetic field]	XiviIVI
2	Pictor A	Jet & Hetspot & Knot [SED hotspot; NuSTAR spectra]	Chandra [NuSTAR]
3	NGC 37 83	Nucleus [additional observation, different state]	XMM
4	NGC 5135	Nucleus + companion SFG [NuSTAR spectra]	Chandra [NuSTAR]
5	CDF-S	Plots on mosaic catalogs + comparison vs. 7Ms CDF-S + obscured AGN spectral analysis [CR → Flux conversion; other X-ray spectra]	Chandra
6	TXS 0506+056	High-energy data centered on neutrino detection → LC, spectrum, source variability [source spectrum and significance in simulated CTAO data]	Fermi [CTAO]

We reconsidered some of the exercises, building new ones and simplifying the 'old' ones

X-ray laboratory: groups and projects. III

# Exercise	Source	X-ray data
1	NGC5135	Chandra
2	CDF-S	Chandra
3	NGC1068	XMM-Newton
4	3C382/3C33	XMM-Newton
5	TXS0506+056	Fermi

- ☐ More details on the exercises: Friday
- \square Data $\leftarrow \rightarrow$ group association: today (random)

X-ray laboratory webpage. I

Lessons, Tutorials, Bibliography, threads, links to X-ray software + useful stuff...

X-ray Laboratory 2025

17 November 2025 to 12 December 2025
Europe/Rome timezone

https://indico.ict.inaf.it/event/3432

Overview

PROGRAM

LESSONS

TUTORIALS

PROJECTS

USEFUL MATERIAL

USEFUL LINKS TEACHERS

BIBLIOGRAPHY

** WELCOME TO THE X-RAY LABORATORY 2025 **

In collaboration with the Department of Physics and Astronomy of the University of Bologna (DIFA), OAS-Bologna organizes combined seminars/laboratories investigating Active Galactic Nuclei (AGN) through the analysis of their high-energy emission (X-ray/gamma-ray).

Design: E. Torresi

The laboratory will be held from November 17th to December 12th (last week optional).

Students are introduced to the current problematics of supermassive black holes to contextualize their data analysis projects. At the end of the laboratory, students re required to present their results in a PowerPoint presentation, similar to that at an Astrophysical Conference.

X-ray laboratory webpage. II

USEFUL LINKS

XMM-Newton (SAS)

- XMM-Newton ABC Guide
- SAS Users Guide
- XMM-Newton threads
- XMM-Newton Users Handbook
- · XMM-Newton pile up

Chandra (CIAO)

- Introduction to CIAO
- Science Threads
- · The Chandra ABC Guide to Pileup

FERMI

- CICERONE (fermitools)
- Fermipy

ds9

SAOImage DS9 Users Manual

XSPEC

· XSPEC on-line manual

LINUX

- · Handbook of LINUX commands (in Italian)
- · Summary of LINUX commands
- Advanced guide to LINUX

Other useful links

- Energy conversion
- 2. F-test
- 3. DeltaChi square distribution for a given number of dof and a given value of P
- 4. Calculation of the logarithmic error bars

Presentation of students' work and Exams. I

□ Evaluation for each lab, then 'averaged' over the three modules → vote

[30-0 outstanding excellent Ε [29-30] [28-29] VG very good [26-28] good G [23-26] satisfactory Sa [18-23[sufficient Su <18 failed

Evaluation criteria content/presentation/commitment/language

- Communication to the students at the end of all three labs
- □ Students can either accept the vote or have an oral examination (previous votes are then not considered anymore) → the 'classic' exam at the end of the lab is then optional (students' choice). Students may not decline a grade more than twice
- > RADIO/mm LAB: written report (one per group, max=15 pages)
- > OPTICAL LAB/X-RAY LAB: powerpoint presentation (one per group)
- ☐ Exams dates:
 - ➤ Radio/mm: reports due by 12.01.26, discussion+exams: week 26th-30th Jan.
 - ➤ High-Energy: powerpoint presentations, week 12th-26th Jan.
 - ➤ Optical: powerpoint presentations, week 19th-23rd Jan.

For mark<18 and those not accepting the final vote: date in Feb. (tbc)

Presentation of students' work and Exams. II

- About 10 minutes/student. Questions are typically at the end of each of the sub-parts of your presentation
- 2. The number of slides is indicatively 1 slide/minute. You must select what you want to show us and your main results (not everything!)
- 3. Prepare your presentation in such a way that it can be easily sub-divided into 3 sub-parts (if the group is made of 3 persons, ...)
- 4. We will **randomly** decide who is presenting what in each presentation
- 5. You can prepare hidden slides to be used just in case you want to properly answer to one of our questions
- 6. Avoid too many animations
- 7. It is fundamental that you **introduce the source** in a broad scientific context (i.e., what is the principal science problem that you may want to address), **identify the main points of the process of data analysis and interpretation** (within the available time) and that you are fully prepared on these issues

Presentation of students' work and Exams. III

RECAP

- Scientific problem and goals of the project
- Presentation of the source and its main properties
- Data available (having in mind the main characteristics of the adopted instruments)
- Data analysis
- Presentation of the results and discussion

Remember: Each student should have the entire presentation clear in his/her mind (it is a work made by/within the group)

We will decide who (within each group) is presenting each sub-part of the presentation

Web page - Multiwavelength Astrophysics Lab course

https://www.unibo.it/sitoweb/cristian.vignali/en

Teaching ____

96385 - Multiwavelength Astrophysics Laboratory

Please check the latest news/announcements for all updates

Lessons
Virtual Learning Environment
+

https://indico.ict.inaf.it/event/3432/