## Michela Mapelli<sup>1,2,3,4</sup>

INAF, Padova
 INFN, Milano
 2015 MERAC prize
 2012 FIRB fellow

# N-body and hydrodynamical simulations of star clusters and star forming regions

COLLABORATORS: Mario Spera, Alessandro Alberto Trani, Elisa Bortolas, Elena Gavagnin, Ben Czaja, Ugo Niccolò Di Carlo, Giulio Dondi, Nicola Giacobbo, Tom Kimpson, Enrico Montanari, ....

Roma, June 20 2016

# <u>OUTLINE</u>

**1. Introduction: why young star clusters and star forming regions?** 

2. N-body simulations without gas and with gas

3. Synergy between simulations and data of young / open clusters (Gaia ESO survey, Gaia, VISTA Magellanic Cloud survey, ...)

4. What we use and what we need

**1.** Why young star clusters and star forming regions?

- ~ 80 % of stars thought to form in star clusters (Lada & Lada 2003)
- $\rightarrow$  BUILDING BLOCKS OF GALAXY DISCS



**2.** N-Body simulations with gas / without gas

Modelling star clusters requires 3 ingredients (not necessarily in the same simulation):

## i- dynamics

most star clusters have shorter two-body relaxation time than lifetime

## ii- stellar evolution

most properties of star clusters depend on interplay between dynamics and stellar evolution e.g. mass loss by massive stars changes star cluster potential → affect dynamics

## iii- gas physics:

clue to understand embedded star clusters and infant mortality

- **2.** N-Body simulations with gas / without gas
- i- Dynamics of star clusters: Direct N-body simulations
  - solve Newton equation directly
    → high accuracy dynamics
  - special purpose hardware such as graphics processing units (GPUs)
  - 1:1 correspondence star-particle



## DETAILS ALREADY IN MARIO'S TALK

(e.g. MM+ 2013; MM & Bressan 2013; Trani, MM, Bressan 2014; Ziosi, MM+ 2014; MM+ 2015)

**2.** N-Body simulations with gas / without gas

- i- Dynamics of star clusters: Direct N-body simulations
- ii Stellar evolution: stellar evolution can be added in direct-N-body simulations:
  - each particle is a star with physical mass, radius, luminosity, temperature, metallicity changing in time
  - stellar winds for MS and post-MS
  - recipes for formation of black holes and other remnants



**2.** N-Body simulations with gas / without gas

- i- Dynamics of star clusters: Direct N-body simulations
- ii Stellar evolution: stellar evolution can be added in direct-N-body simulations:
  - each particle is a star with physical mass, radius, luminosity, temperature, metallicity changing in time
  - stellar winds for MS and post-MS
  - recipes for formation of black holes and other remnants



Example: movie of dynamics+stellar evolution KIRA for dynamics (Portegies Zwart+ 2001) + SEVN code for stellar evolution (Spera, MM & Bressan 2015)

- **2.** N-Body simulations with gas *I* without gas
- i- Dynamics of star clusters: Direct N-body simulations
- ii Stellar evolution: stellar evolution can be added in direct-N-body simulations:
- iii Gas physics
  - generally not coupled with direct N-body but with collisionless N-body
  - essential to model collapse of cloud
  - recipes for cooling, radiative transfer, chemistry, magnetic fields



70 pc

**2.** N-Body simulations with gas *I* without gas

i- Dynamics of star clusters: Direct N-body simulations

70 pc

ii – Stellar evolution: stellar evolution can be added 5 Myr in direct-N-body simulations:

### iii – Gas physics

- generally not coupled with direct N-body but with collisionless N-body
- essential to model collapse of cloud
- recipes for cooling, radiative transfer, chemistry, magnetic fields

**3.** Synergy between simulations and major current surveys

#### **EXAMPLE: Gaia ESO Survey (GES)**

#### sample of embedded, young and open star clusters (all stages of star cluster life are included in the same survey)



### **3.** Synergy between simulations and major current surveys

Our simulations predict NO ENERGY EQUIPARTITION in OPEN CLUSTERS (Spera, Mapelli & Jeffries 2016, MNRAS)

**NO EQUIPARTITION MEANS NO DYNAMICAL EQUILIBRIUM** 

<u>5 pc</u>



#### A PREDICTION THAT THE GES CAN TEST IN MANY NEARBY CLUSTERS

- 4. What we use and what we need?
- WITHOUT GAS: WE NEED GPUs
- WITH GAS: GPUs or >16 CPUs per run (>128 Gb RAM)

**@ INAF - Padova we have** 

- 3 NVIDIA Tesla GPUs
- 1 small SERVER (64 cores, 256 Gb RAM)
- 40 Tb storage



### TOTAL EXPENSE ~ 30 000 EUR

ALL BOUGHT BY OUR TEAM (PI: Mapelli) thanks to COMPETITIVE GRANTS (FIRB, Merac, PRIN-INAF) not a single EURO from FFO (apart from electricity)

- 4. What we use and what we need?
- WITHOUT GAS: WE NEED GPUs

- WITH GAS: GPUs or >16 CPUs per run (>128 Gb RAM)

@ CINECA we obtained
 >4 M CPU/GPU hours through
 COMPETITIVE PROPOSALS
 (100% success rate)

BUT CINECA IS NO LONGER INVESTING IN NVIDIA GPU + QUEUES ARE LOOOOONG (> 1 week for a small job)



- 4. What we use and what we need?
- WITHOUT GAS: WE NEED GPUs
- WITH GAS: GPUs or >16 CPUs per run (>128 Gb RAM)

**OUR DREAM:** A Tier2 or Tier1 machine @ INAF

- equipped with at least 2 NVIDIA GPUS per NODE
- RAM > 128 Gb per NODE

It is expensive (1-2 M EUR x Tier 1) but better than each observatory (or each single groups) buying its own small machines

OUR BACKUP SCENARIO: At least try to negotiate with CINECA for the choice of its future machines



## Our team:ForDyS (Formation and Dynamics of Stars) http://web.pd.astro.it/mapelli/group.html



Ugo N. Di Carlo Matteo Mazzarini Enrico Montanari

**Tom Kimpson**