

Formation pathways of BH-BH binaries: HPC friends and foes

Mario Spera (<u>mario.spera@oapd.inaf.it</u>) (<u>mario.spera@live.it</u>) Postdoctoral fellow at Astronomical Observatory of Padova

Collaborators: Michela Mapelli

What about computing @ INAF? June 20-21, INAF sede centrale, Rome (Italy)

Outline

1. Research aim

Constraining the formation pathways of GW150914/GW151226 and future GW events

2. Achievements so far

Up-to-date black hole mass spectrum

3. Direct N-body simulations

Studying the dynamical evolution of compact objects in dense stellar environments

4. High Performance Computing: means-and-needs analysis Graphics Processing Units, as a must

5. Summary

Origin of GW150914/GW151226

We know

GW150914: first detection

Understanding the origin of GW events: ingredients

Main achievement: SEVN

Up-to-date stellar evolution recipes

Up-to-date SN models

Simple C++ interface for N-Body codes

SEVN: Stellar Evolution for N-body codes

Spera, Mapelli, Bressan 2015 MNRAS, 451, 4086

 It can be easily coupled with N-Body codes (currently implemented in HiGPUs and StarLab)

 SEVN interpolates stellar evolution tables (versatile approach instead of fitting formulas)

(change stellar evolution \rightarrow just change input tables, without modifying the code)

BHs mass spectrum: results (SEVN)

Spera, Mapelli, Bressan 2015 MNRAS, 451, 4086

BHs mass spectrum: results (SEVN)

PARSEC + delayed supernova model Spera, Mapelli, Bressan 2015 MNRAS, 451, 4086 Metallicity 120. -1.0E-4 - - -2.0E-4 - -- 5.0E-4 1.0E-3 ---- 2.0E-3 ----- 4.0E-3 Abbott+ 2016 ApJL, 818, L22 (Fig. 1) ------ 1.0E-2 ----- 2.0E-2 GW150914 estimated metallicity 100 -Below $Z \simeq 0.5 Z_{\odot}$ and possibly below $Z \simeq 0.25 Z_{\odot}$ 08 ⊙ 08 ⊙ 09 ⊑⊡ 00 ⊆ High metallicity stars lose more mass than metal poor stars 40 20 Key points: low Z + direct collapse 20 120 40 60 80 100 140 $\mathsf{M}_{_{\mathsf{7AMS}}}$ ($\mathsf{M}_{_{\odot}}$)

Understanding the origin of GW events: ingredients

What's missing?

N-body simulations of different environments including the new physics implemented in SEVN

Target N-body simulations: codes

Target N-body simulations: codes

Target N-body simulations A perfect marriage with GPUs

Some numbers

GPU performance (Pascal arch., GP100)

✓ Up to 10000 GFLOPS (32bit)
 ✓ Up to 5000 GFLOPS (64bit)

Real N-body apps 8000 GFLOPS (32bit) (expected)

CPU → not more than 500 GFLOPS (32bit)

The big IF: computing resources availability NO GPU clusters to run our simulations: we do have primacy, we cannot keep it!

N-body codes on Xeon Phi? Not worth it

- Lower peak performance (3000 GFLOPS vs 10000 GFLOPS)
- Less number of cores (70 vs 3500)
- Very hard to get a **real speedup** on Xeon Phi
- Efficient porting requires (almost) a professional programmer

WE NEED GPUS

