

RSN4 days: SMBH (dalle Seyfert ai BLAZAR)

M. Dadina (INAF/OAS)

Few numbers to start (thanks to Gemini AI...)

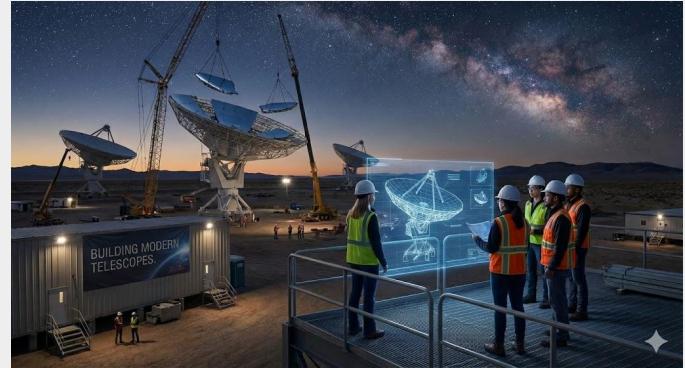
Portale INAF - Ricerca							https://servizi.ced.inaf.it/search.html?search=macroarea&2gruppo=19		
				Mauro Dadina			utente		
Nome	Cognome	titolo	titolo	Nome	Cognome	Nome	utente		
BONOLI	Giacomo	ASSOCIATO	IV	Ugo	Bonoli	Ugo.Bonoli@inaf.it			
		Quescente							
BONOLI	Giacomo	RICERCATORE	Y	O. Bressa	giacomo.bonoli@inaf.it	0000-0003-2464-9077 4	5		
BRAITO	Valentina	PRIMO	Y	O. Bressa	valentina.braito@inaf.it	0000-0002-2629-4989 4	1		
BRONZINI	Ettore	RICERCATORE	N	OAS Bologna	ettore.bronzini@unibo.it	0000-0001-8379-4303 4	1		
BRUNI	Gabriele	RICERCATORE	N	IAPS Roma	gabriele.bruni@inaf.it	0000-0002-5182-6269 4	1		
BUCCANTINI	Nicola	PRIMO	Y	O. Arotti	nicolo.buccantini@inaf.it	0000-0002-8848-1392 4	N.D.		
BURDIERI	Luciano	DIRETTORE	N	IASF Palermo	luciano.burdieri@inaf.it	0000-0001-5438-891X 4	1		
		non disponibile							
BURGAY	Marta	PRIMO	Y	O. Cagliari	marta.burgay@inaf.it	0000-0002-8265-4344 4	2		
		RICERCATORE							
CAMPANIA	Sergio	DIRIGENTE DI	Y	O. Bressa	sergio.campania@inaf.it	0000-0001-6278-1576 4	5		
CAPITANIO	Flaminia	PRIMO	Y	IAPS Roma	flaminia.capitanio@inaf.it	0000-0002-6384-3027 4	5		
CARPOZZIELLO	Silvana	Associate	N	O. Cagliari	carpozziello@inaf.it	0000-0003-0896-2024 4	1		
CAPPI	Massimo	DIRIGENTE DI	Y	OAS Bologna	massimo.cappi@inaf.it	0000-0001-6966-8929 4	5		
CARAVEO	Patrizia	Associate	N	IASF Milano	patrizia.caraveo@inaf.it	0000-0003-2478-8018 4	2		
		in corso di Ricerca							
CARDILLO	Martina	RICERCATORE	Y	IAPS Roma	martina.cardillo@inaf.it	0000-0001-8877-3996 4	N.D.		
CARDINALI	Alessandro	Associate	N	IAPS Roma	alessandro.cardinali@sapienza.ssr.it	0000-0003-4606-9903 4	2		
CAROSI	Alessandro	RICERCATORE	Y	O. Roma	alessandro.carosì@inaf.it	0000-0001-8960-5804 4	5		
CAROTENUTO	Francesco	ASSEGNISTA	N	O. Roma	francesco.carotenuto@inaf.it	0000-0002-0426-3276 4	N.D.		
CASELLA	Piergiorgio	DIRIGENTE DI	Y	O. Roma	piergiorgio.casella@inaf.it	0000-0002-0792-3301 4	5		
CASTELLINA	Antonella	DIRIGENTE DI	Y	O. Torino	castellina@oato.inaf.it	0000-0002-0005-2467 4	5		
		Ricerca							
CELLI	Silvia	Associate	N	O. Roma	silvia.celli@uniroma1.it	0000-0002-7952-0851 4	Nessuna		
CINELLI	Marco	RICERCATORE	N	IAPS Roma	marco.cinelli@inaf.it	0000-0001-8713-3591 4	5		
COIOLFI	Riccardo	PRIMO	Y	O. Padova	riccardo.coiolfi@inaf.it	0000-0003-3140-9933 4	2		
COICCHI	Massimo	PRIMO	Y	O. Cagliari	massimo.coicchi@inaf.it	0000-0002-5817-3124 4	2		
CORONGIU	ALESSANDRO	RICERCATORE	Y	O. Cagliari	alessandro.corongiu@inaf.it	0000-0002-5924-3141 4	2		
COVINO	Stefano	DIRIGENTE DI	Y	O. Bressa	stefano.covino@inaf.it	0000-0001-9078-9507 4	5		
CRESTAN	Silvia	ASSEGNISTA	N	IAPS Milano	silvia.crestan@inaf.it	4	Nessuna		
CUSUMANO	Giancarlo	DIRIGENTE DI	Y	IASF Palermo	giancarlo.cusumano@ic.inaf.it	0000-0002-8151-1990 4	5		
D'AF	Antonino	PRIMO	Y	IASF Palermo	antonino.daf@inaf.it	0000-0002-5042-1036 4	N.D.		
D'AMMENDA	Filippo	PRIMO	Y	IAS Bologna	filippo.dammda@inaf.it	0000-0001-7618-7527 4	1		
D'AVANZO	Paolo	PRIMO	Y	O. Bressa	paolo.davanzo@inaf.it	0000-0001-7164-1508 4	5		
DADINA	Mauro	RICERCATORE	Y	OAS Bologna	mauro.dadina@inaf.it	0000-0002-7058-7564 4	5		
DALLA BARBA	Benedetta	RICERCATORE	N	O. Bressa	benedetta.dallabarba@inaf.it	4	1		
DE COLLE	Fabio	Associate	N	O. Cagliari	fabio@fruckereus.univ.mx	0000-0002-3137-4633 4	2		
DE LUCA	Andrea	DIRIGENTE DI	Y	IAPS Milano	andrea.deluca@inaf.it	0000-0001-6739-6874 4	5		
DE MARTINO	Donatella	DIRIGENTE DI	Y	O. Cagliari	donatella.demartino@inaf.it	0000-0002-5069-4202 4	2		

Few starting numbers (thanks to Gemini AI...)

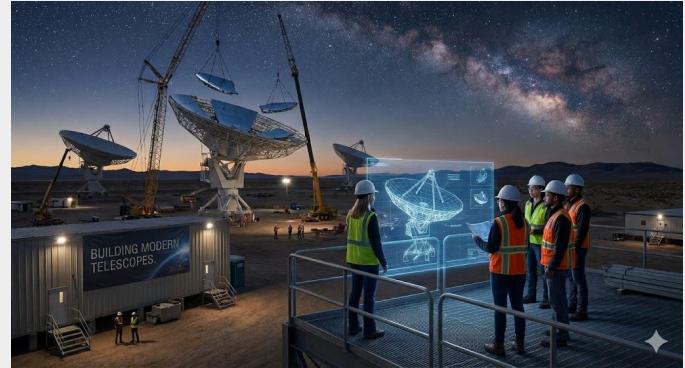
1. From “Anagrafica INAF”: 197 researchers in RSN4 (no quiescent researchers included)

Few starting numbers (thanks to Gemini AI...)

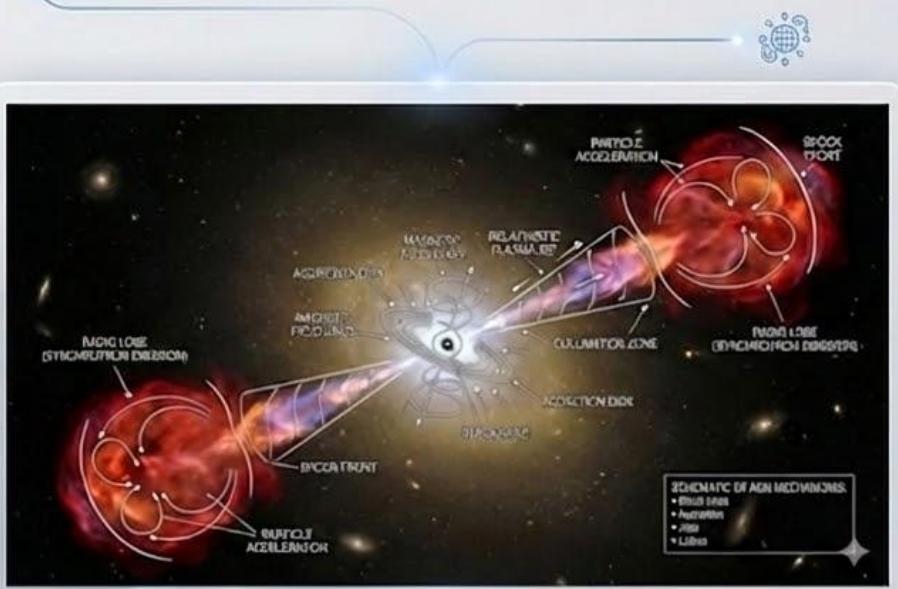
1. From “Anagrafica INAF”: 197 researchers in RSN4 (no quiescent researchers included)
2. 39 mainly working on “AGN”


Few starting numbers (thanks to Gemini AI...)

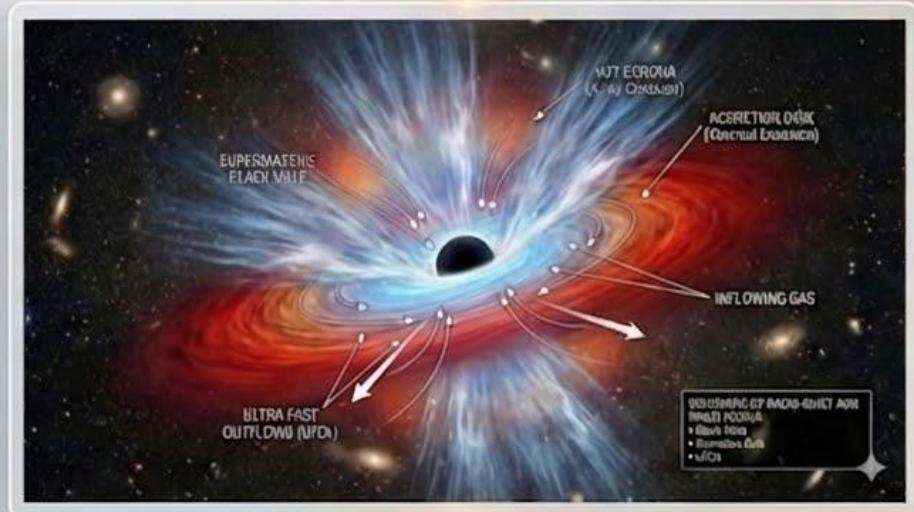
1. From “Anagrafica INAF”: 197 researchers in RSN4 (no quiescent researchers included)
2. 39 mainly working on “AGN”
3. 10 Mi (9 OAB + 1 IASF), 9 IRA, 7 IAPS Roma, 7 OAS, 2 IASF-Palermo, 4 in other Institutes...


Few starting numbers (thanks to Gemini AI...)

1. From “Anagrafica INAF”: 197 researchers in RSN4 (no quiescent researchers included)
2. 39 mainly working on “AGN”
3. 10 Mi (9 OAB + 1 IASF), 9 IRA, 7 IAPS Roma, 7 OAS, 2 IASF-Palermo, 4 in other Institutes...
4. which 2nd RSN?: 21 RSN1, 14 RSN5, 1 RSN2 (assegnista), 3 N.D.


Few starting numbers (thanks to Gemini AI...)

1. From “Anagrafica INAF”: 197 researchers in RSN4 (no quiescent researchers included - 139 researchers from other RSNs “are RSN4” as second option 57 of whom belong to RSN1 and 54 RSN5



...going-on with Gemini AI...

RL-AGN → **22** researchers

RQ-AGN → **17** researchers

How to collect INFO on what's going on SMBH among RSN4 researchers?

“Carissime colleghi e carissimi colleghi,

Mi e' stato chiesto di fare una breve review (20 minuti) nel corso delle giornate RSN4 che si terranno a Napoli dal 28 al 30 gennaio 2026. Io, in particolare, dovrò concentrarmi su

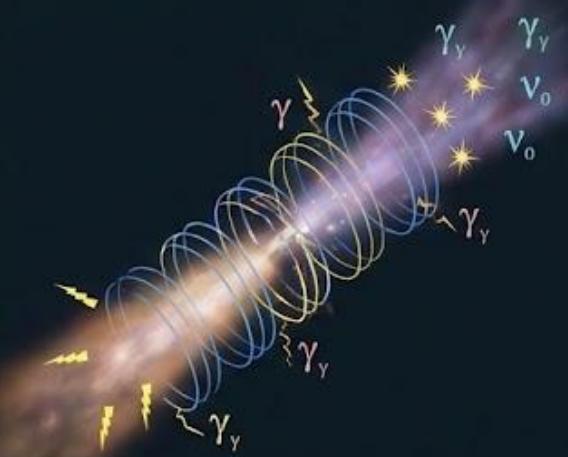
Supermassive black-holes (dalle Seyferts ai Blazars)

Considerando che l'intento dell'incontro e' di avere una panoramica sulle "**... attivita' relative a questo tema,**" su "**in quali istituti/osservatori vengono fatte e di quali aspetti si occupano**" mi e' stato chiesto di individuare/sottolineare "**..qualche highlights, domande aperte, come possiamo affrontarle in futuro, di cosa c'è ancora bisogno, sinergie con altri gruppi, grandi progetti in cui sono coinvolti...**"

Sono con questa a chiedervi quindi idee, contributi, commenti sui punti sopra menzionati e, se possibile, di inviriameli il prima possibile.”

Radio-Loud AGN: Scientific Pillars and INAF Groups (RSN4)

1. Event Horizon & Jet Launch

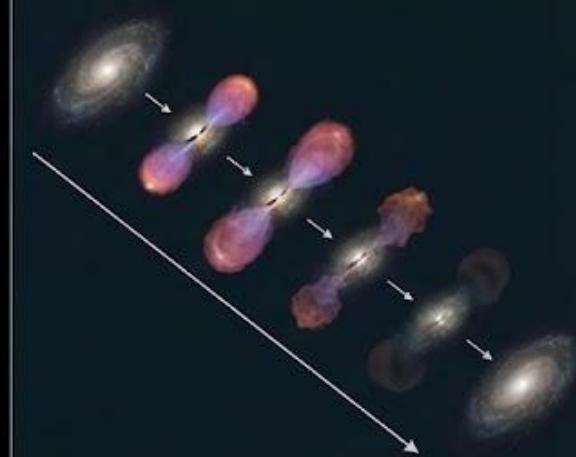


Physical Focus: Formation, Collimation, Launch (micro-arcsec)

INAF Groups:

IAPS / IRA (mm-VLBI Team, EHT, GMVA)

2. Acceleration and Jet Physics



Physical Focus: Shock/Reconnection, Magnetic Fields, Neutrinos, VHE observations

INAF Groups:

OAS (Hadronic models, VHE observations)
OA Brera (Theory, Accelerators, IceCube, VHE obs), **IAPS** (IXPE, AGILE)

3. Life Cycle and Duty Cycle

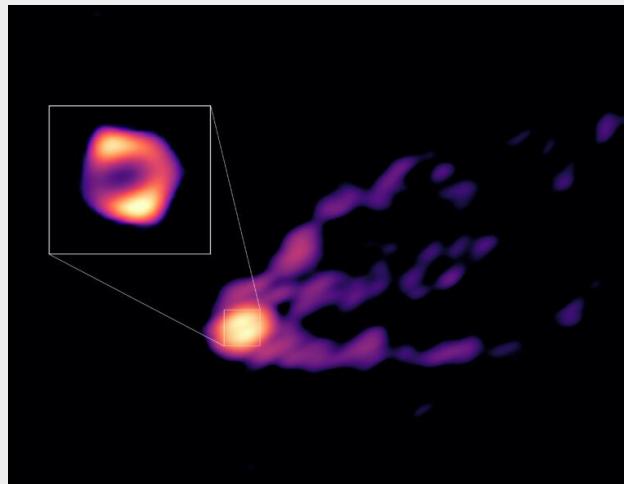
Physical Focus: Temporal evolution, Restarted sources, Galactic feedback

INAF Groups:

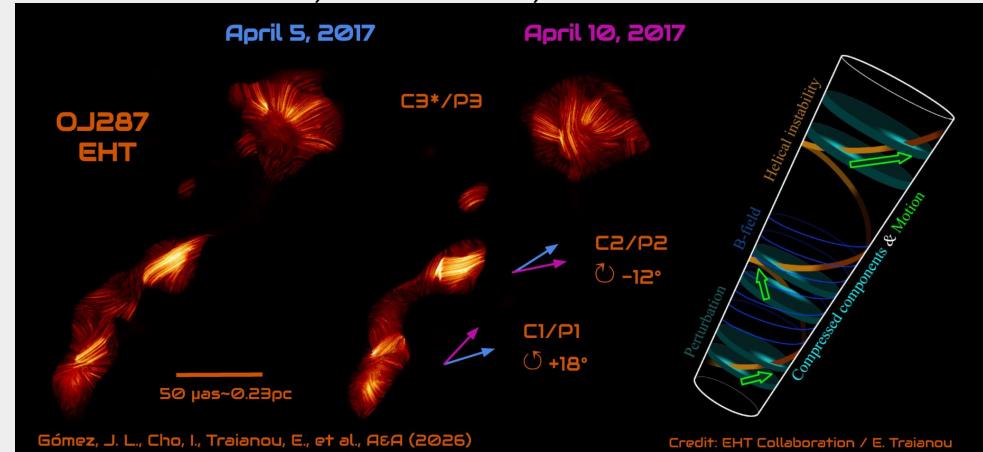
IRA (HE-VLBI)

OA Padova (Optical monitoring)

OA Torino (WEBT, LSST)


SMBHs e mm-VLBI

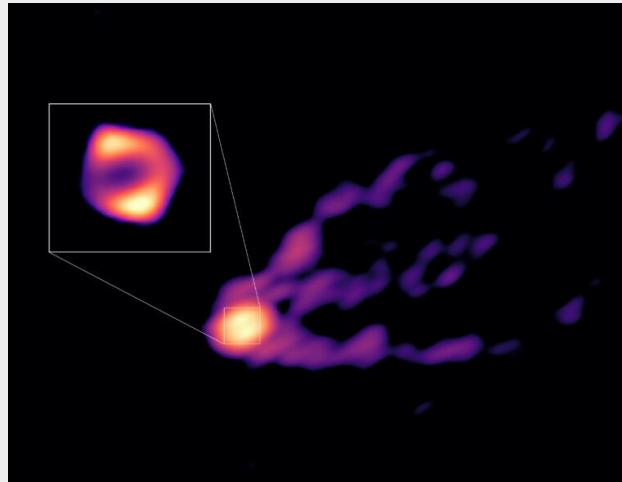
(Rocco Lico, Marcello Giroletti,
Monica Orienti, Filippo D'Ammando,
Nicola Marchili, Elisabetta Liuzzo)


Observation mainly based on two arrays:

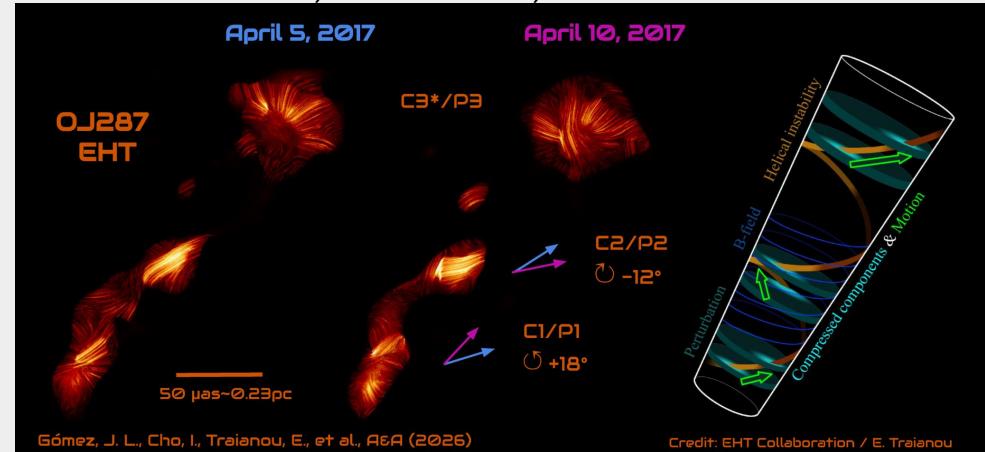
- 1) 3 mm con Global mm VLBI array (GMVA)
- 2) 1mm con Event Horizon Telescope (EHT)
microarcsec resolution

EH scale...

Study of the jet structures: formation, collimation, acceleration, evolution


SMBHs e mm-VLBI

(Rocco Lico, Marcello Giroletti,
Monica Orienti, Filippo D'Ammando,
Nicola Marchili, Elisabetta Liuzzo)


Observation mainly based on two arrays:

- 1) 3 mm con Global mm VLBI array (GMVA)
- 2) 1mm con Event Horizon Telescope (EHT)
microarcsec resolution

EH scale...

Study of the jet structures: formation, collimation, acceleration, evolution

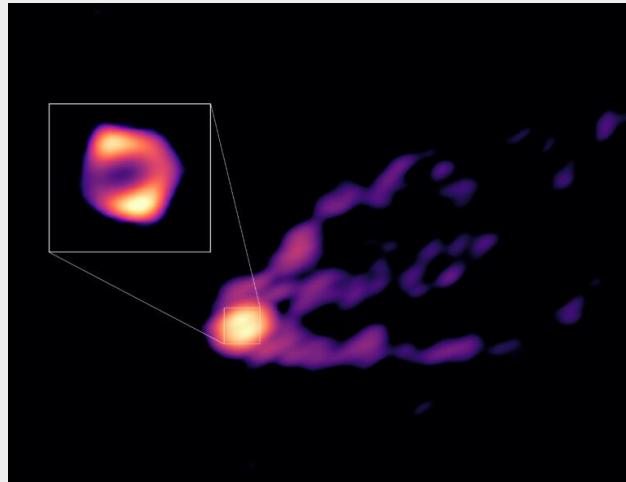
Gómez, J. L., Cho, I., Traianou, E., et al., *A&A* (2026)

Credit: EHT Collaboration / E. Traianou

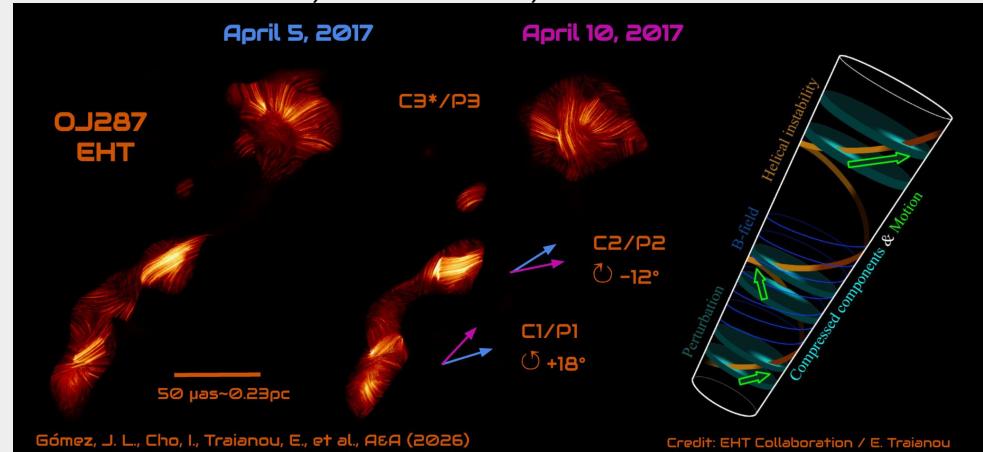
EH:

1. magnetic fields well organized
2. polarization (15%)
3. MAD?
4. -> long term observations: dynamic environment: variable polarization close to EH

future: increasing number of telescope, frequencies, space-VLBI


SMBHs e mm-VLBI

(Rocco Lico, Marcello Giroletti,
Monica Orienti, Filippo D'Ammando,
Nicola Marchili, Elisabetta Liuzzo)


Observation mainly based on two arrays:

- 1) 3 mm con Global mm VLBI array (GMVA)
- 2) 1mm con Event Horizon Telescope (EHT)
microarcsec resolution

EH scale...

Study of the jet structures: formation, collimation, acceleration, evolution

1. **Ultra-High Resolution:** mm-VLBI achieves microarcsecond precision, allowing direct observation of the jet's formation and acceleration zones.
2. **Energy Transition:** At $\sim 10^5$ Schwarzschild radii, the "mm-VLBI core" marks where magnetic energy converts into mechanical power, making the jet kinematically dominated.
3. **EHT Insights (e.g., OJ287):** Recent data reveals complex internal structures, including non-ballistic shocks and Kelvin-Helmholtz instabilities within helical magnetic fields.
4. **Frequency Synergy:** While 1mm (EHT) provides maximum detail, 22-43 GHz observations offer higher temporal cadence to track the jet's evolution over time.
5. **Italian Contribution:** INAF is finishing the installation of triple-band receivers on its antennae, placing Italy at the forefront of global relativistic jet research.

Research topics

- jet formation, accretion & ejection processes;
- jet structure, particle acceleration & radiative processes;
- gamma-ray & multi-messenger astrophysics;
- evolution of the extragalactic radio sources, feeding & feedback.

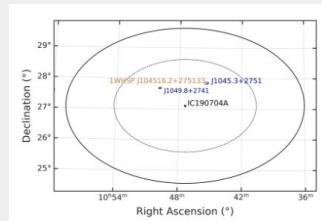
Methods:

- Multi-frequency radio observations & VLBI, neutrino-candidate follow-up campaign
- High-energy (X-to-gamma-ray) analysis;
- Population studies & multi-wavelength emission modeling;
- MHD simulations

National & International collaborations:

- Ongoing, active collaborations with several INAF institutes (Torino, Milano, Padova & Rome);
- European/international collaborations: large collaboration for neutrino follow up campaigns, long-term collaboration with Asia radioastronomy institutes (Japan/Korea/China), collaborations with US colleagues (CfA) & UK

Involvement in collaborations, current instrumentation & future projects:


- Italian VLBI network, EVN, Eating VLBI (East-Asia Italy Nearly Global VLBI) & Korea/Japan radioastronomy projects & collaboration;
- X-ray & gamma-ray missions (XMM, Swift, Chandra, NuSTAR, Fermi);
- CTA, SKA, LSST, Athena.

Fundings (most recent):

- Fermi/ASI: 1 co-funded TD (but no clear further funding);
- 2024 INAF grant call: n.2 AGN-related GO (PI: Orienti, Miglior) resulting in 1 PhD fellowship.....+ n.2 minigrants (PI: Spingola, Lico);

Critical points:

- Need to consolidate the young scientist staff;
- Lack of students (Master & PhD level)
- Timeline for the awarded INAF grants
- Radio data handling: need for technological improvement to face the increasingly large datasets;

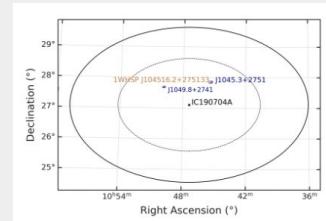
Research topics

- jet formation, accretion & ejection processes;
- jet structure, particle acceleration & radiative processes;
- gamma-ray & multi-messenger astrophysics;
- evolution of the extragalactic radio sources, feeding & feedback.

Methods:

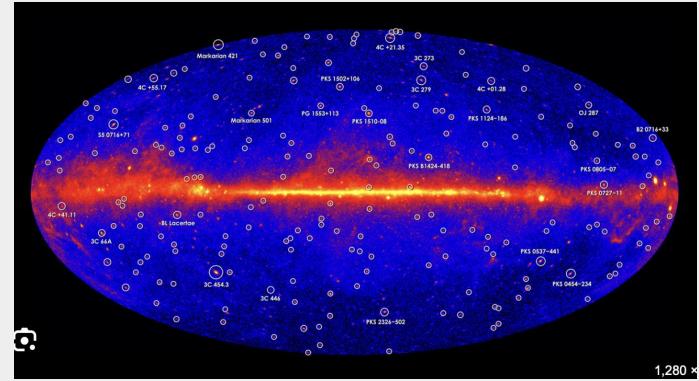
- Multi-frequency radio observations & VLBI, neutrino-candidate follow-up campaign
- High-energy (X-to-gamma-ray) analysis;
- Population studies & multi-wavelength emission modeling;
- MHD simulations

SMBH as particle accelerators

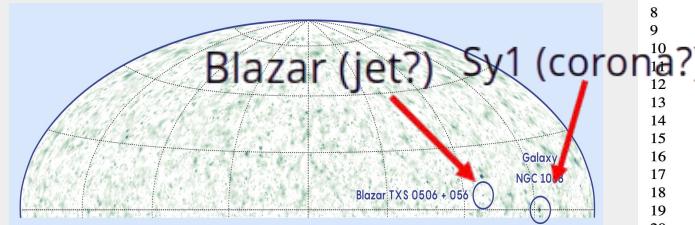

RL AGNs are the large majority of HE and VHE emitters in the extragalactic sky

Acceleration mechanisms of the relativistic particles? Fast variability at VHE points to magnetic reconnection/turbulence (but modeling of the emission suggest small/moderate magnetization). IXPE results support shocks (?)

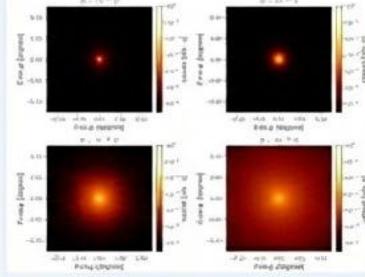
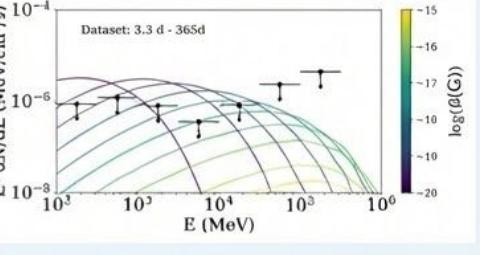
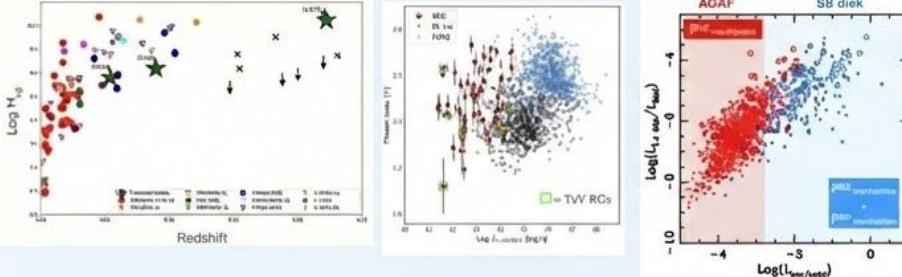
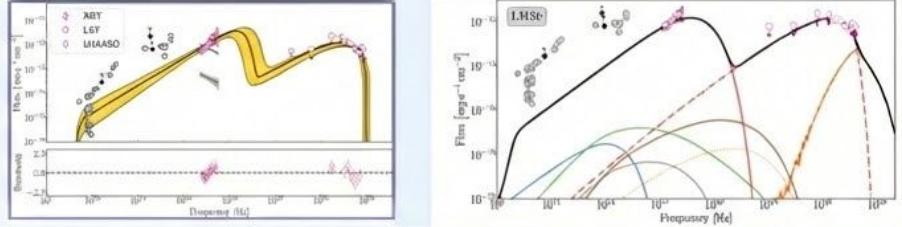
Jet structure and dynamics? Role of instabilities? Magnetic field structure?


IceCube results point to AGNs (both RL and RQ) as the dominant high-energy ($E > 100$ TeV) neutrino emitters.

Where and how high-energy protons are accelerated? What are the targets (pp vs $p\gamma$)? Is the emitting region opaque or transparent to gamma-rays? Is there any connection with UHECR sources?


SMBH as particle accelerators

1. **Particle Acceleration:** A major international focus is understanding how electrons and nuclei reach ultra-high energies, bridging plasma physics simulations with **multi-messenger** data (neutrinos and UHECRs).
2. **Emission Sites:** Evidence suggests neutrinos may originate from both **Seyfert galaxies (coronae)** and **blazars (jets)**, highlighting different acceleration environments.
3. **Instrumental Synergy:** Future progress depends on linking high-energy observatories (**CTA, ASTRI, IXPE, COSI**) with neutrino detectors like **Km3Net**.
4. **The Role of Theory:** Advanced simulations (**MHD and PIC codes**) are essential to keep pace with international standards and interpret complex data.
5. **Crisis in Research:** There is a critical need to train young theorists, yet the field faces significant hurdles due to the **elimination of dedicated "Theory" funding** channels and a shrinking workforce caused by retirements.

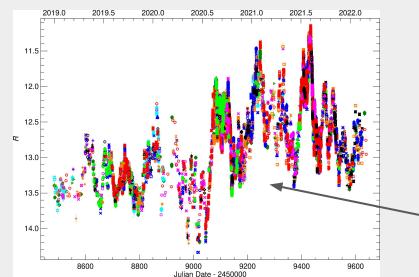
IceCube “hot spots”

	Source Name	Class
1	NGC 1068	SBG
2	PKS 1424 + 240	BLL
3	PMN J1650-5044	BLL
4	GB6 J1542 + 6129	BLL
5	TXS 0506 + 056	BLL
6	G343.1-2.3	PWN
7	PMN J1603-4904	BLL
8	MGRO J2019 + 37	GAL
9	4C + 55.17	FSRQ
10	M 31	SBG
11	Galactic Center	BCU
12	TXS 1714-336	BLL
13	PKS 1717 + 177	BLL
14	PKS 1830-211	FSRQ
15	PMN J1802-3940	FSRQ
16	B2 1520 + 31	FSRQ
17	OJ 014	BLL
18	GRS 1285.0	UNIDB
19	MGRO J1908 + 06	GAL
20	PKS 0048-09	BLL

High- and very-high energy group @ OAS Bologna

<h3>Blazars and GRBs</h3>	<p>VHE gamma-rays are absorbed by background radiation and reprocessed to GeV energies; in the presence of an Inter Galactic Magnetic Field, this leads to observable signatures such as blazar halos and GRB echo -> IGMF constraints</p>	
<h3>Radio galaxies</h3>	<p>Radio, sub-mm, X-ray, and gamma-ray observations from the ground and from space, based on large samples of sources Exploitation of high-energy archives and deep radio-IR-optical surveys</p>	
	<p>Modeling of spectral energy distributions using leptonic and hadronic models Estimate of the contribution of radio galaxies to the cosmic neutrino emission</p>	

Importance of MW and long term monitoring:


Many programs based on the exploitation of MW data to study these “particle accelerators”.

Simona Paiano, INAF-IASF Palermo ZBLLAC

Claudia M. Raiteri, INAF-OATo

AGN (mainly blazar) multiwavelength variability

Executive Officer (since 2000) of the **Whole Earth Blazar Telescope (WEBT)**, an international consortium that synchronizes tens of global ground-based telescopes to achieve continuous, multi-wavelength monitoring of the very variable emission of relativistic jets.
Campaign Manager of most of its projects.

From Raiteri et al. 2024, A&A,692,A48

*A wiggling filamentary jet at the origin of the blazar multi-wavelength behaviour
BL Lacertae in 2019-2022*

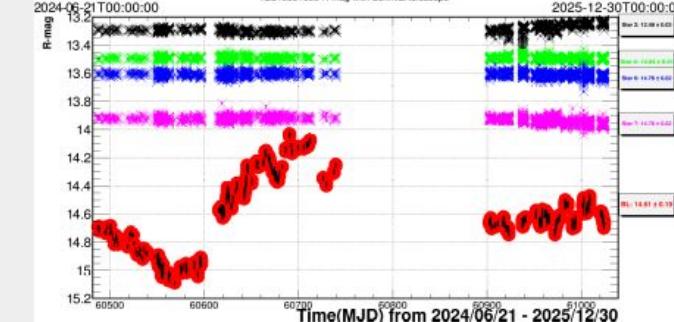
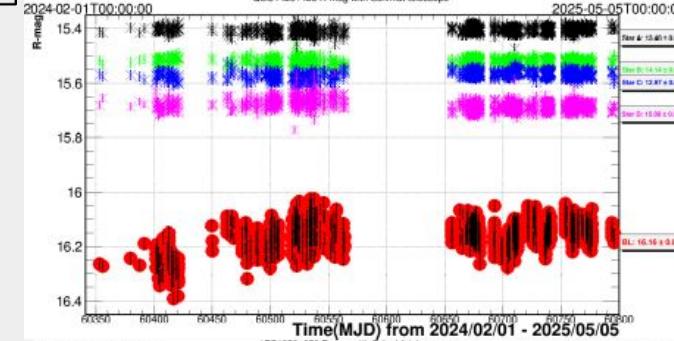
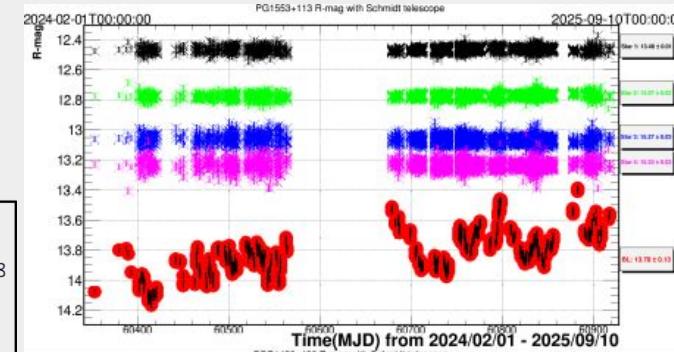
Scientific responsible (since 2019) of the AGN work package within Coordination Unit 7 (variability) of the **Gaia** Consortium (DPAC), with significant current involvement in achieving the publication of DR4 by the end of 2026. Selection and characterisation of variable AGN.

Program Manager (since 2021) of the Italian participation in Rubin-LSST through an in-kind contribution Program led by INAF to provide data rights for the national scientific community (see **Rubin-LSST@Italy** website <https://sites.google.com/inaf.it/rubin-lsst-italy>)
Member of the "AGN" and "Transients and Variable Stars" Science Collaborations.
Co-chair of the Blazar follow-up task force.

Monitoraggio ottico di blazar TeV con il telescopio Schmidt 67/91 cm di Asiago (2024-2026)

Campagna Osservativa

- Telescopio Schmidt 67/91 - Osservatorio di Asiago
- Monitoraggio fotometrico in banda R e I su 3 blazar TeV: PG 1553+113, 1ES 1959+650, 1ES 1426+428
- Oltre 15.000 osservazioni (2024-2025), ridotte con calibrazioni complete (bias, flat, patching)
- Aperture ottimizzate per minimizzare la contaminazione della galassia ospite




Risultati principali in corso di pubblicazione

- 1ES 1426+428: IDV significativa in 7 notti ($>3\sigma$), ampiezze 9-12%
- PG 1553+113 e 1ES 1959+650: solo possibile IDV (2.6-3.3 σ), non confermata

Sinergie e sviluppi futuri

Il programma si colloca in **sinergia con MAGIC** per il follow-up ottico simultaneo a eventi gamma. Stiamo valutando di proporre, per la prossima **Call Schmidt 2026 (scadenza 12 gennaio)**, un'estensione a nuovi target come **FSRQ** di interesse per la comunità ad alte energie

sorgente	filtro	notti	Tot.ore
PG1553+113	R	167	93
PG1553+113	I	157	86
QSO1426+428	R	113	36
QSO1426+428	I	108	33
1ES 1959+650	R	157	78
1ES 1959+650	I	150	70

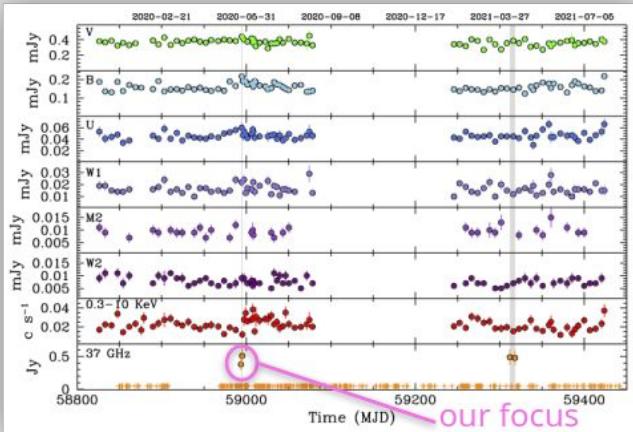
The X-ray duty-cycle of gamma-ray narrow-line Seyfert 1s: a multi-year, multi-objects approach

These sources have been observed by Swift mainly as follow-up of flares at other wavelengths

This introduces a bias in the understanding of their X-ray variability behavior and duty-cycle because they favor high states

We started our project with a sample of 4 well-known g-NLS1s:

SBS 0846+513


PMN J0948+0022

PKS 1502+036

FBQS J1644.9+2619

Good VHE candidates !
[see Romano et al., 2020, MNRAS, 494, 411]

Stefano Vercellone & Patrizia Romano

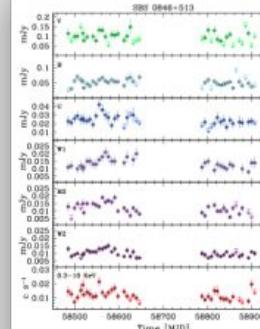


Fig. 1. Multi-wavelength observations of SBS 0846+513. The gap in the data is due to the source being in Sun constraint for Swift.

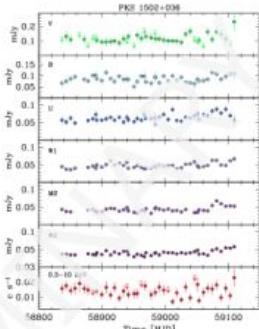


Fig. 3. Multi-wavelength observations of PKS 1502+036.

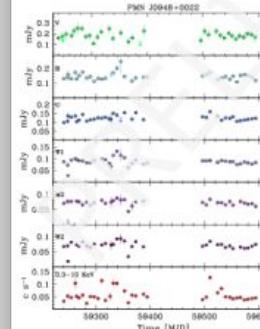


Fig. 2. Multi-wavelength observations of PMN J0948+0022. The gap in the data is due to the source being in Sun constraint for Swift.

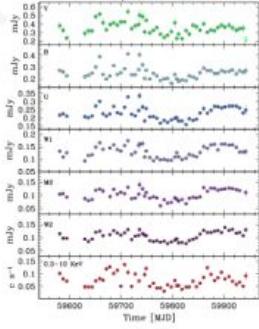


Fig. 4. Multi-wavelength observations of FBQS J1644+2619.

Swift Observatory
1 observation/week
3 ks each observation
1 year baseline
Optical + UV + X-ray

Blazars in Gamma-rays @iaps

Statistical study of **gamma-ray flares from FSRQs**:

Waiting times between flares **done**, Pacciani 2022
Flare Luminosity and duration distribution **work in progress**

Triggering ToO observations for Cherenkov telescopes
when a gamma-ray flare is detected with FERMI-LAT
with significant emission above 10 GeV.

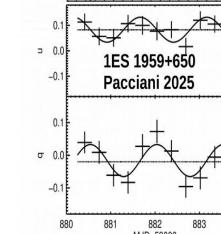
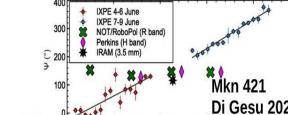
Several blazars detected after this trigger with
Cherenkov telescope! **active and working**

X-ray polarimetric signatures of Blazars with IXPE@IAPS and connection with acceleration mechanism

- X-Ray EVPA traces the magnetic field direction in blazar jet.
- For High Synchrotron peaked blazars, X-rays and TeV Gamma-ray
- Are thought to come from the same electron population.
- X-ray polarimetry reveals the magnetic field direction in the emitting region
- For the majority of IXPE observation of HSP blazars, the X-ray EVPA is parallel to the jet (but see, Pacciani 2025).
- Acceleration by shock needs magnetic field parallel to the shock front;
- Jet direction, and X-ray polarization exceeds optical polarization.
 - Energy stratified shock model (Lioudakis 2022) seem to be favored for Mkn 501 (but see, e.g., Bolis 2026)
- **MWL campaigns up to TeV** allow to model acceleration processes.
 - IXPE ToO on flaring HSP already performed; simultaneous to MWL campaign on the source (**MAGIC & VERITAS**);
 - IXPE observation of 1ES 1959+650 obtained for IXPE CYCLE 3, and MWL campaign up to **TeV** organized.

Luigi Pacciani, Dawoon Kim, Paolo Soffitta, Fabio Muleri

Luigi Pacciani, Valerio Vittorini, Antonio Stamerra (OAR), Fabrizio Tavecchio (OAB)

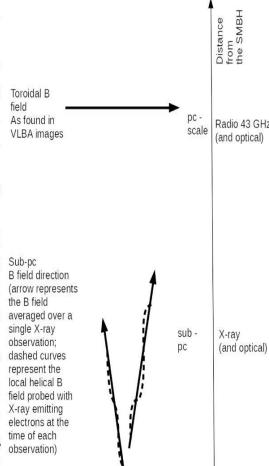


X-ray polarimetric signatures of Blazars with IXPE@IAPS and connection with jet magnetic field structure

Mkn 421:

Discovery of EVPA Rotation in X-ray (twice on 5 observations, Di Gesu 2023, Kim 2024);

Plasma follows magnetic field lines;
EVPA is orthogonal to the projected magnetic field for Synchrotron emission;

- **Magnetic field structure within the jet is roughly helical:**

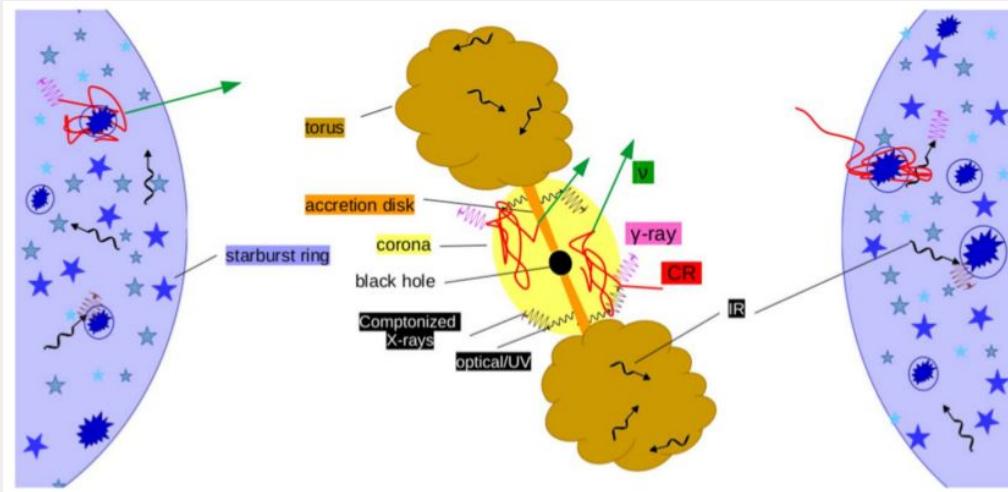

1ES 1959+650:

Discovery of EVPA Rotation in X-ray (twice on 6 observations; average EVPA perpendicular to the Jet axis when rotation is detected (Pacciani 2025), contrary to finding for Mkn 501 (Maksim 2025)).

- Acceleration through shock is disfavored;

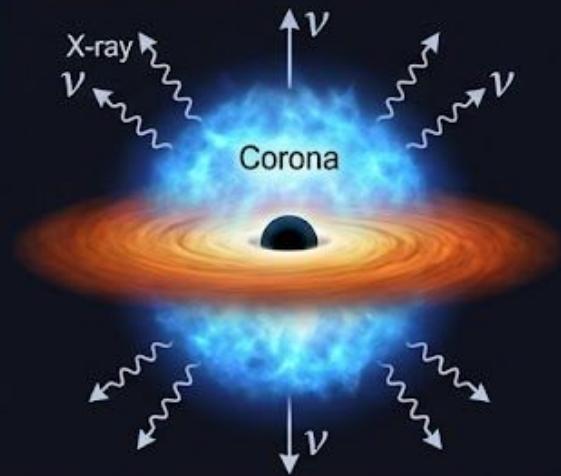
- To observe the whole helical pattern, the helical magnetic field should be stretched along the jet axis (in contrast to findings from VLBA).

- Are we observing the base of the jet in X-ray during flaring activity ??? (Jet is opaque in radio on sub pc scale, VLBA observes the magnetic field at pc distance from the SMBH).


Pacciani 2025

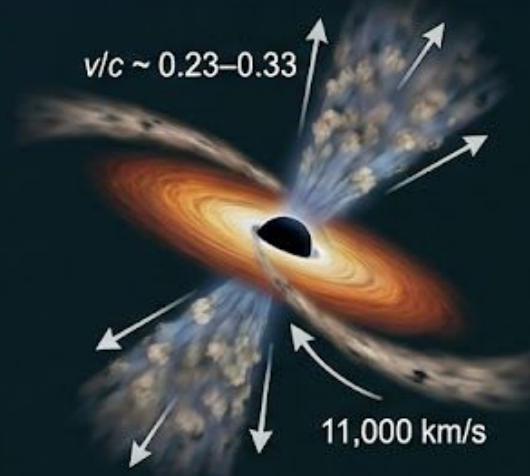
Luigi Pacciani, Dawoon Kim, Paolo Soffitta, Fabio Muleri

Neutrinos from AGN coronae


James Rodi, Gabriele Bruni (IAPS)

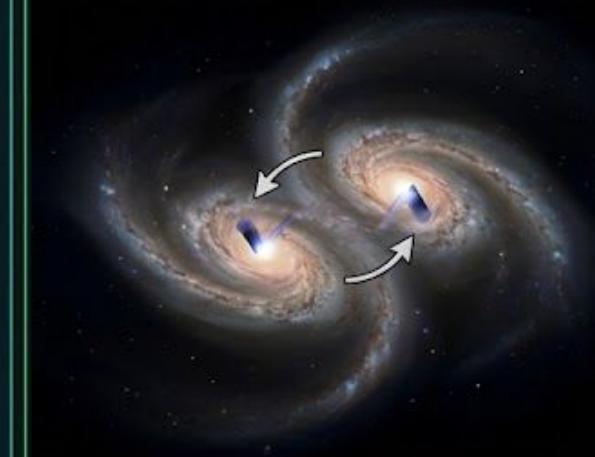
- Recent results suggest neutrinos may also be produced in Seyferts (I+II)
- Neutrinos possibly produced in AGN core/coronae
 - Process(es) for proton acceleration in cores remains debated
 - Hard X-rays provide a probe for particle processes in coronae
- Studied the Seyfert II AGN 3C 403 and NGC 1068

Radio-Quiet AGN: Scientific Pillars and INAF Groups (RSN4)


1. Coronae & Neutrino Sources

Physical Focus: X-ray spectro-polarimetry (geometry), Proton acceleration in core/coronae, Neutrino sources, Origin of Radio Emission in RQ AGN.

INAF Groups: IAPS (IXPE team, AGILE team: 3C 403, NGC 1068), IAPS (Radio emission origin).


2. Relativistic Winds & Inflows

Physical Focus: Ultra-Fast Outflows (UFOs), Clumpy wind structures, High-velocity inflows.

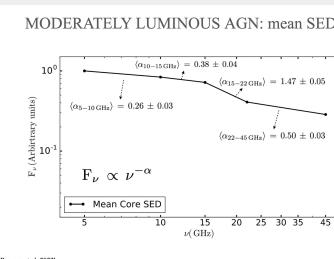
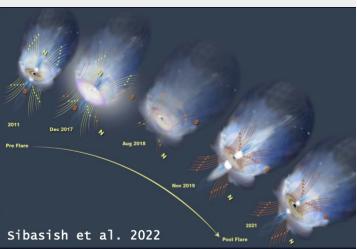
INAF Groups: OA Brera / OAS (XRISM Campaigns: PDS 456, PG 1211, Mrk 509).

3. Dual AGN & Evolution

Physical Focus: SMBH growth through mergers, Observing early-to-late merging stages, Coalescence signatures.

INAF Groups: IAPS / OA Brera / OAS ('Cosmic Duets', Dual AGN).

Gamma Radio Astronomy Laboratory GRAL Group

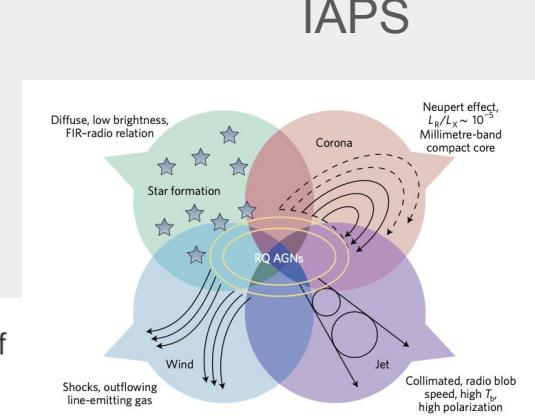


Accretion & Ejection physics

People: F. Panessa (Primo Ricercatore), G. Bruni (TD), Matteo Fanelli (Ph.D.), Maya Garbaccio Gili (Ph.D.)

Projects: Multi-frequency observations of accretion and ejection phenomena in radio-quiet and radio loud AGN

- Origin of radio emission in radio-quiet AGN
- Jets and particle acceleration
- AGN Radio feedback on the host galaxy
- Black holes across the mass scale and time-domain studies
- Study of the AGN jet duty cycle.

Highlights & Collaborations

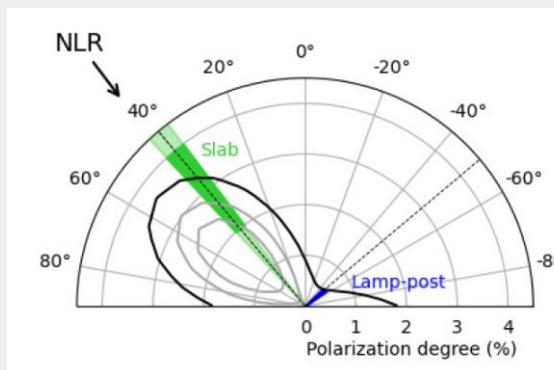

A Discovery of Young Radio Sources in the Cores of Giant Radio Galaxies Selected at Hard X-Rays

G. Bruni¹ , F. Panessa¹ , L. Bassani², E. Chiaraluce^{1,3} , A. Kraus⁴ , D. Dallacasa^{5,6} , A. Bazzano¹ , L. Hernández-García⁷ , A. Malizia², P. Ubertini¹

[+ Show full author list](#)

Published 2019 April 19 • © 2019. The American Astronomical Society. All rights reserved.

[The Astrophysical Journal, Volume 875, Number 2](#)

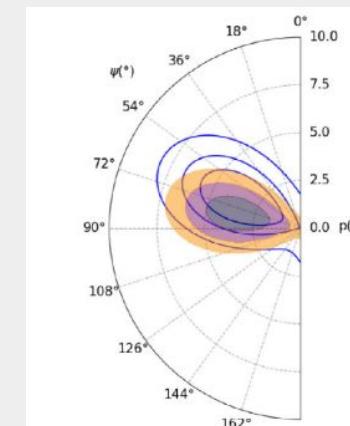

Panessa et al. 2019, Nature
Astronomy Review

Physical parameters of the AGN's corona are degenerate with respect to geometry. Polarimetry can help to break this degeneration.

MCG-5-23-16 (Sefert-1)

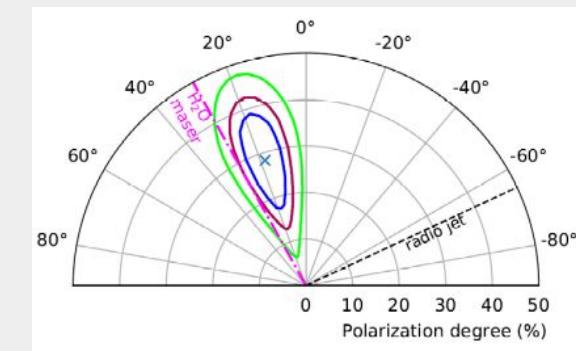
Tagliacozzo, D. et al., MNRAS, 2023

PD < 3.2 % (99 % C.L.)



Sey1: Polarimetry of NGC 4151 the corona is parallel to the disk.
 MCG-5-23-16 and IC4329A suggest with low significance the same geometry

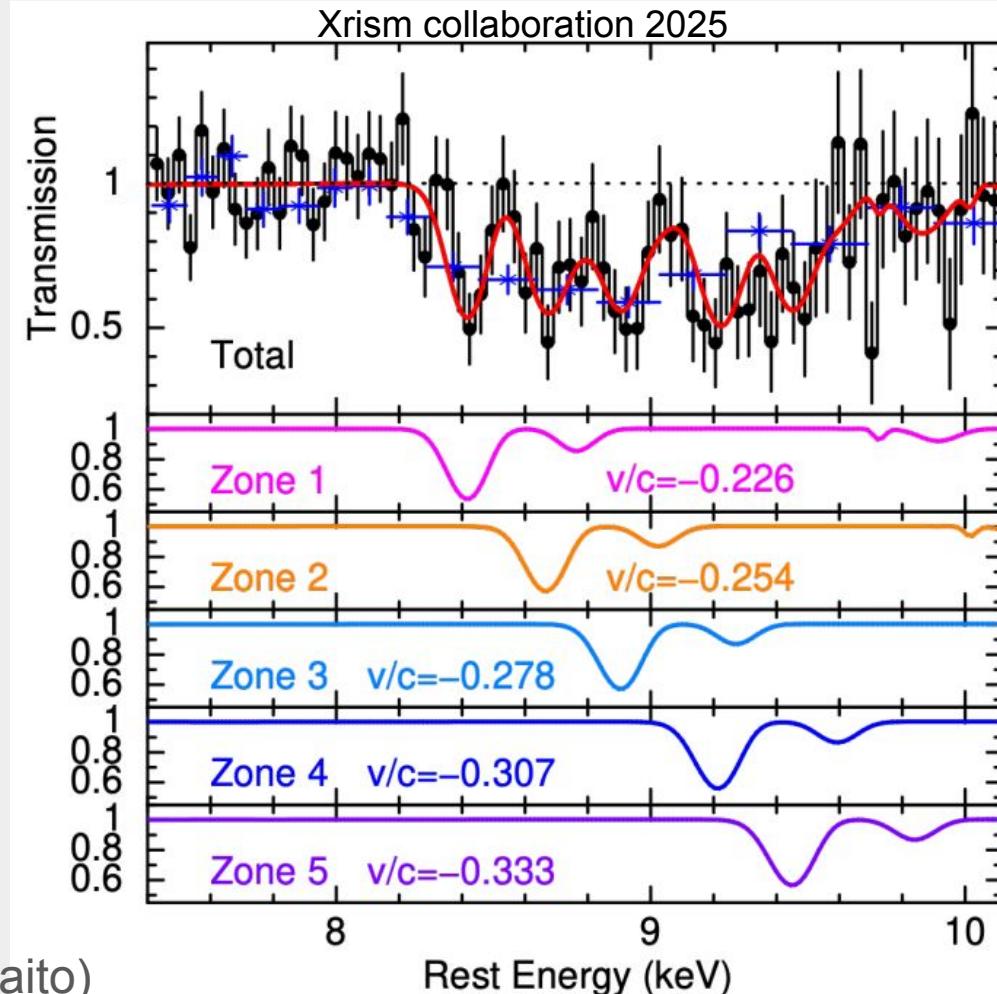
IC4329A (Sefert-1)


Ingram, A. et al., MNRAS, 2023

PD=3.3+/-1.1 %

Circinus galaxy (Compton thick Sy2)

Ursini et al., MNRAS 2023


For The cold reflector (torus) IXPE measured a 2-6 keV polarization of:
 $P = 28 \% +/- 7\%$ and $\Theta = 180 +/- 50$

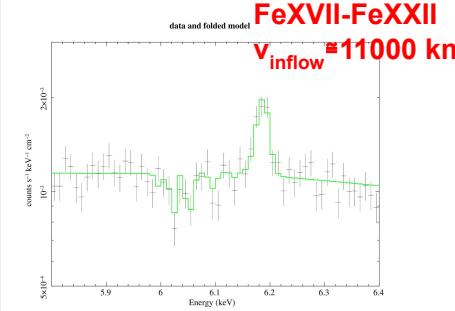
Sey2: X-ray spectro-polarimetry in Circinus galaxy and NGC-1068 showed at low significance that the torus axis and the radio jet are aligned. The torus aperture is similar in both.

Area needed!!!!

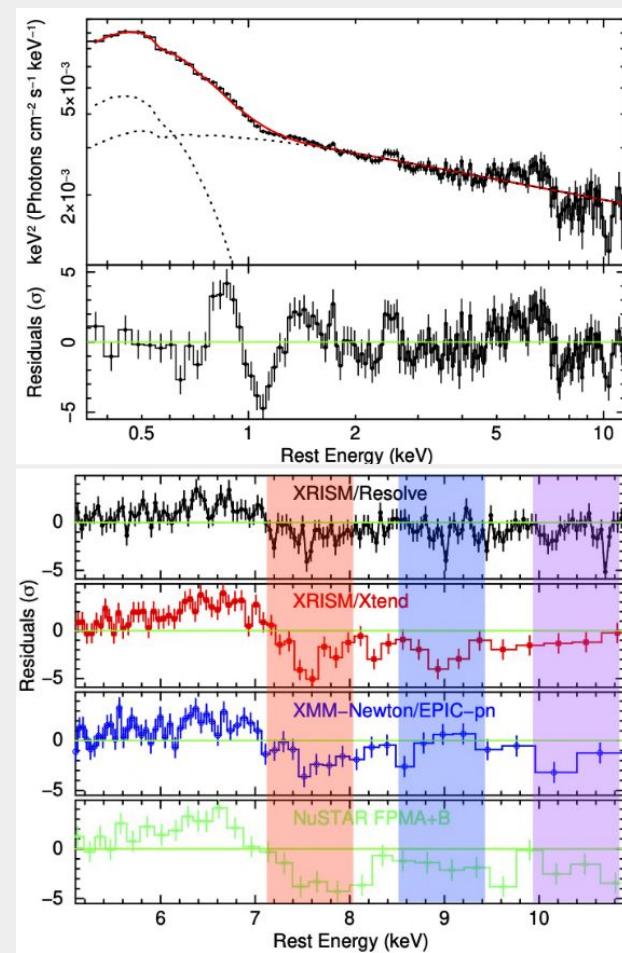
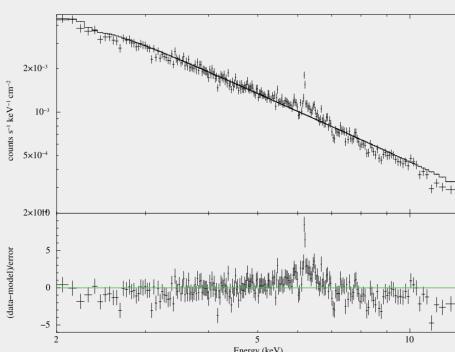
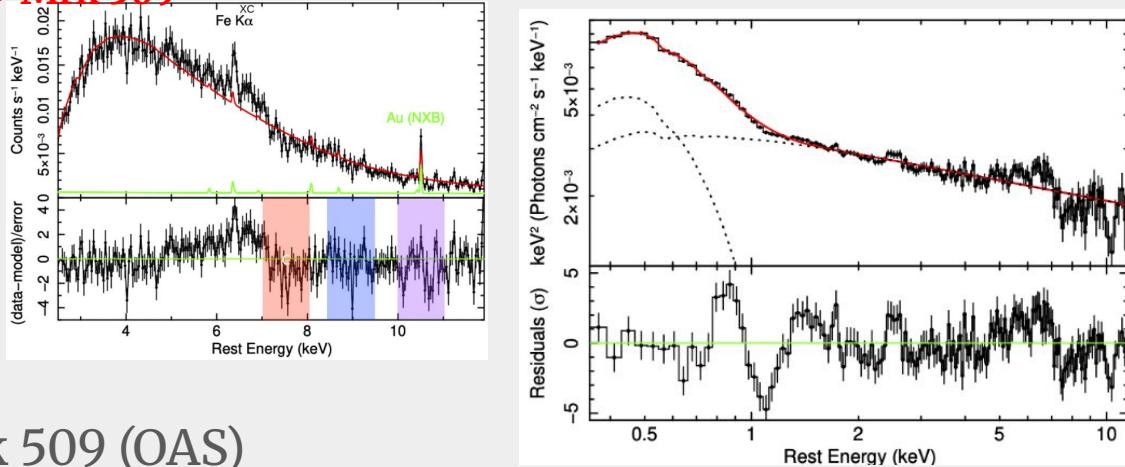
The clumpy wind of PDS456

- 5 distinct high-velocity components with $v/c \sim 0.226 - 0.333$
- Opacity arises from He-like 1s-2p lines. Approx constant ionization ($\log \xi = 5$ for PDS SED) but wide velocity range.
- Not smooth or constant velocity wind. UFO is highly inhomogeneous, with up to 106 clumps.
- From the Fe-K emission profile we inferred a wide angle of 2π &
- $\dot{M}_{\text{out}} = 60 - 300 \text{ MSun/yr}$
- $L_{\text{KIN}} \sim 10^{47} \text{ erg/s} \sim L_{\text{Edd}}$

PG1211+143: 2024 XRISM campaign + Mrk 509

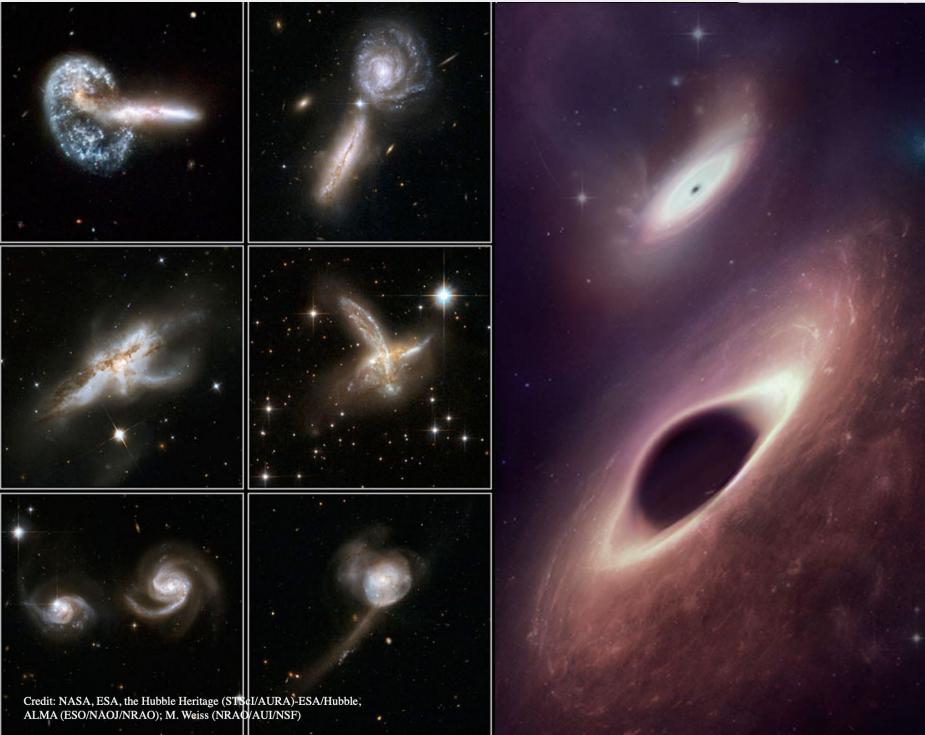

230 ksec XRISM on 29 Nov 2024
NuSTAR (80ks), XMM (120 ks) DDT
Swift (35x1.5 ks)

XMM: a relatively unobscured state,
evident structures both in the soft and
Fe-K




XMM-NuSTAR-Xtend: all reveal the
presence of broad absorption features
between 7-8 keV (Rest frame
 $z=0.0809$) and possibly higher velocity
components btw 9-11 keV.

Like in PDS456, Fe K absorption is
resolved into multiple lines by
XRISM/Resolve!

Absorption from
FeXVII-FeXXII
 $v_{\text{inflow}} \approx 11000 \text{ km/s}$



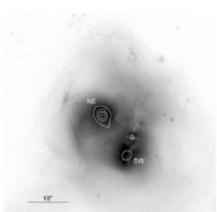
IASF Palermo group is also
working on this...

Dual AGN

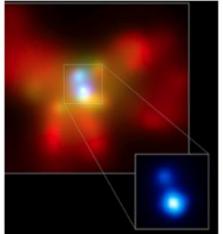
Galaxy mergers may be a way through which SMBHs form
Major mergers may trigger the most luminous AGN

Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble,
ALMA (ESO/NAOJ/NRAO); M. Weiss (NRAO/AUI/NSF)

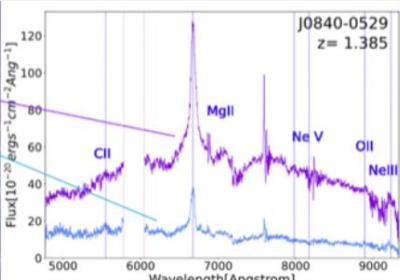
core questions related to merger-AGN connection:

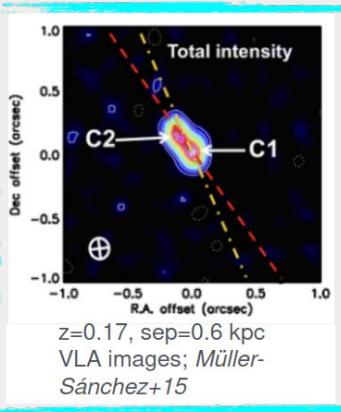

- Are mergers the primary trigger of AGN?
- Rate of dual AGN at different separations in merging galaxies dual AGN characterization (Ledd, NH, type, BH mass ratio..) at different stage of separation
- Do all galaxy mergers produce AGN?
- Incidence of AGN in mergers vs isolated galaxies

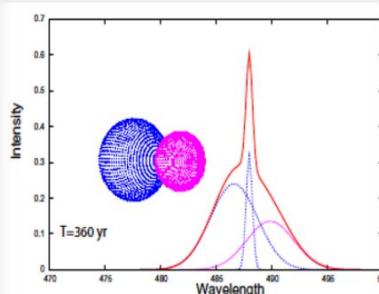
IAPS-OABrera... (OAS...)

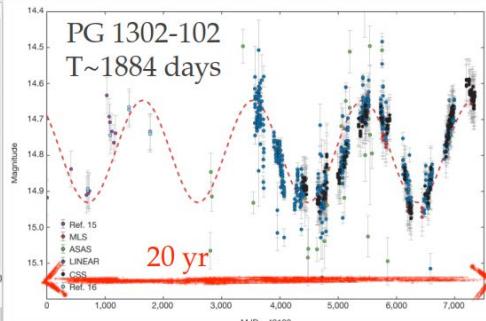

Begelman et al., 2006; Mayer et al., 2010; Mayer and Bonoli, 2019; Treister et al. 2012; Fan et al. 2016; Goulding et al. 2018, ..

On the way to SMBH merging: observing three stages


IAPS-OABrera... (OAS...)


Mrk 266 (Iwasawa+20)
z=0.027
HST WFPC2 image +
Chandra contours
Proj. sep. \sim 6 kpc (10'')


NGC6240 (Komossa+03)
z=0.024
Chandra color-image
Proj. sep. \sim 2 kpc (1.8'')


Optical GMP + MUSE
Scialpi+24, Mannucci+23,23

z=0.17, sep=0.6 kpc
VLA images; Müller-
Sánchez+15

Double peaked Optical emission
lines, Severgnini+21,
Rigamonti+25

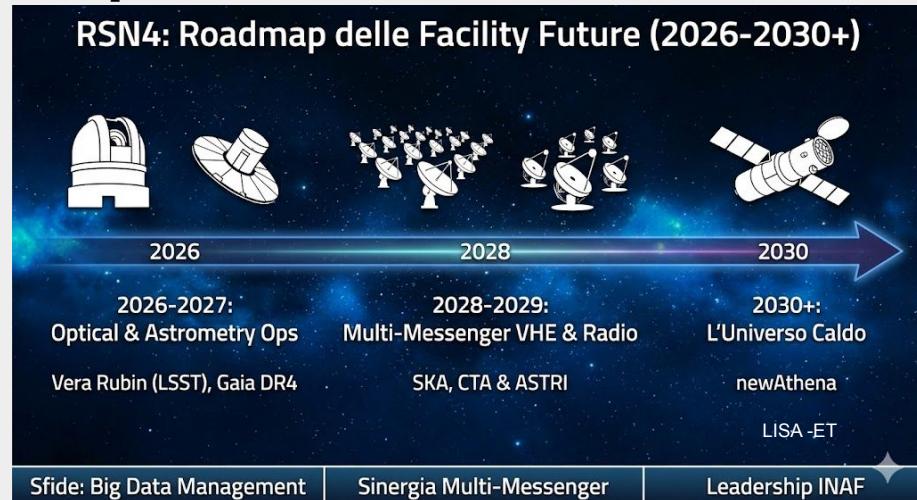
PG 1302-102
T~1884 days
20 yr
Photometric variability (ZTF, CRTS) Charisi+16,
Graham+15,+18; Serafinelli+20, Severgnini+18

Dual AGN early late: direct imaging,
X-ray/optical spectroscopy, IR photometry
Wide surveys + high spatial resolution
follow-ups

Binary AGN: indirect techniques:
X-ray/optical spectroscopy and
variability

Coalescence: X-ray/optical
spectroscopy, variability
Multi-messenger in act!

Space-Based Observatories


- XMM-Newton
- Swift Observatory
- Chandra
- NuSTAR
- Fermi
- IXPE
- XRISM
- AGILE
- Gaia:
- HST (Hubble Space Telescope)
- NuSTAR

Ground-Based Telescopes and Arrays

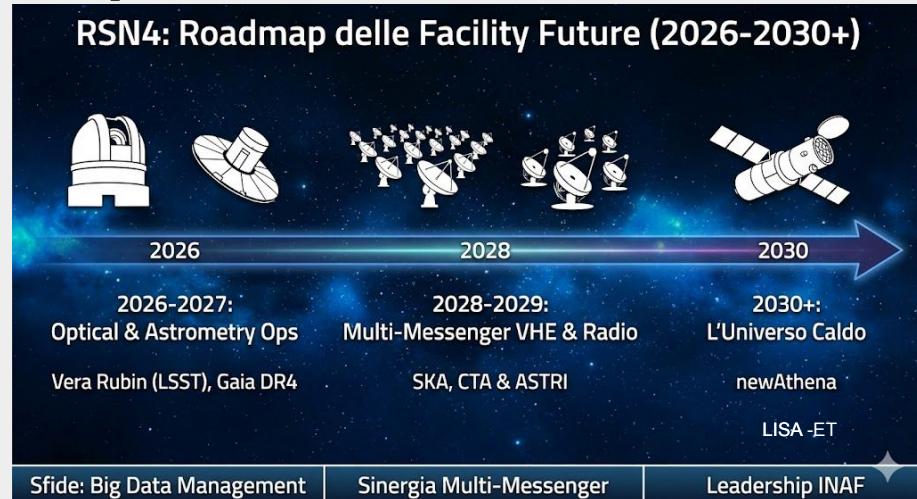
- VLBI (Very Long Baseline Interferometry):
- GMVA (Global mm VLBI array):
- EHT (Event Horizon Telescope):
- MAGIC:
- VERITAS:
- Asiago Schmidt 67/91 cm Telescope:
- WEBT (Whole Earth Blazar Telescope):
- VLA (Very Large Array):
- Loiano Cassini Telescope:
- ALMA
- IceCube
- VLT

Future facilities

- **Astri**
- **CTA**
- **NewAthena**
- **Vera Rubin**
- **SKA**

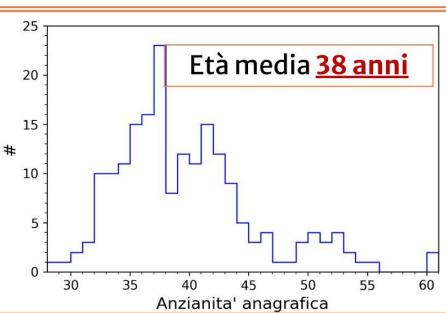
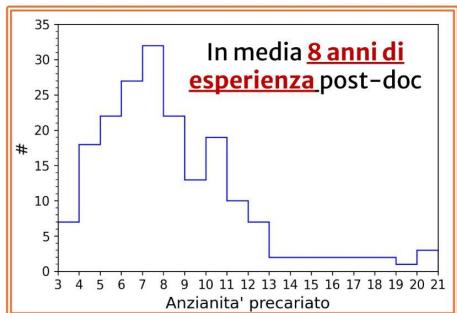
Space-Based Observatories

- XMM-Newton
- Swift Observatory
- Chandra
- NuSTAR
- Fermi
- IXPE
- XRISM
- AGILE
- Gaia:
- HST (Hubble Space Telescope)
- NuSTAR


Recruiting + funding policies

Ground-Based Telescopes and Arrays

- VLBI (Very Long Baseline Interferometry):
- GMVA (Global mm VLBI array):
- EHT (Event Horizon Telescope):
- MAGIC:
- VERITAS:
- Asiago Schmidt 67/91 cm Telescope:
- WEBT (Whole Earth Blazar Telescope):
- VLA (Very Large Array):
- Loiano Cassini Telescope:
- ALMA
- IceCube
- VLT

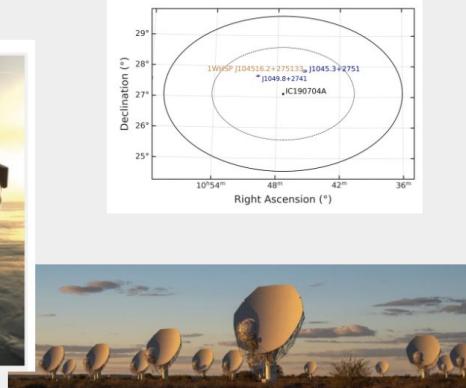


Future facilities

- **Astri**
- **CTA**
- **NewAthena**
- **Vera Rubin**
- **SKA**

La situazione del personale precario in INAF è **INSOSTENIBILE!**

1.200 TI Vs **650** precari: più di 1 precario ogni 2 persone di ruolo

Entro l'anno, l'attuale situazione determinerà l'esodo di > 100 lavoratori altamente qualificati


È **URGENTE** che INAF **RIVENDICHI** con fermezza, presso il MUR, finanziamenti svincolati dal turnover ed etichettati per le **STABILIZZAZIONI MADIA**: unica soluzione per questa emergenza

Per sostenerci, inquadra il QRcode e firma

- Need to consolidate the young scientist staff;
- Lack of students (Master & PhD level)
- Timeline for the awarded INAF grants
- data handling: need for technological improvement to face the increasingly large datasets;

& Rome);
mpaigns, long-term collaboration with
ues (CfA) & UK

/Japan radioastronomy projects &

llowship.....+ n.2 minigrants