
The evolving role of AI in (Stellar) Astronomy

G. SACCO



The need of AI for Astronomy
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Large amount of data

Complex physical models and 
multiple parameters

+

Traditional methods 
for data analysis are 

not adequate

+
Effects of atmosphere and 

instruments

Credit: Y.S. Ting



Deep learning in Galactic Astronomy
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(e.g. Ness+2015, Zingales & Weidmann 2018, 
Ting+2019, Ambrosch+2023) 

Strengths 
• Much faster 
• Better with low res spectra
• Better with Low SNR spectra
•  Capabilities to combine 

different dataset

Weaknesses
• Results depend on the training 

sample 
• Interpretability
• Error estimates 

        Guiglion+2024 



Scientific AI for astronomy: Domain adaptation

Domain adaptation to use models for training
(E.g. O’Brian+2021, Belfiore+2025)
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Belfiore+2025 O’Brien+2021



Scientific AI for astronomy

Normalizing flows to calculate 
posterior distribution 

(e.g. Kang+2022, 2023, Iglesias-
Navarro+2024 Candebat+ 2024)

Candebat+2024
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New tools for interpretability
(e. g., Ambrosch+2023, Candebat, 

Sacco+2024)



AI 2.0: Transformers and Foundation Models

Very large Dataset

LLM Architecture

Pretraining

Foundation Model

Specific and small 
dataset

Finetuned LLM

Finetuning

Vaswani+2017

Attention is all you need
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Self-Supervised Learning pre-training

Scalling Law

Lample & Conneau 2019

Versatility

Cross-Domain Generalization

AI 2.0: Transformers and Foundation models

Kaplan et al. 2020
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Foundation models in astronomy

de Haan et al. 2025

Specialized AI 
assistant in 
Astronomy
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Foundation models in astronomy

(Leung & Bovy 2023, 2024)
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The multi-modal universe

(The multimodal Universe Collaboration 2024)

A massive dataset 
to develop Large 

Multi Modal Model 
for astronomy 
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LLM
Environmnent

Reward

State

Action

AI 2.0: AI agents
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AI agents in Astronomy

(Ting+2025)

The Capabilities of an 
LLM to analyze plot 

and define a strategy 
are used to improve 

the fit
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Quantum Artificial Intelligence
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quantum dynamical map � followed by a measurement
step [48, 49, 74]. Furthermore, whenever the input data
are not purely quantum, they need to be encoded in
a quantum state in order to be processed by the reser-
voir [49, 58, 75], giving us a dataset of training states
(straink ! ⇢traink ). If we assume that the measurement
step is performed evaluating the expectation values of a
Positive Operator Valued Measure (POVM) ⇧i, we have
the following correspondence:

R(Strain) ! P train
ik = Tr

�
⇧i�[⇢

train
k ]

 
(3)

where P
train is the probability matrix relative to the

training states. The dimension of P entirely depends on
the number of measured operators on the reservoir and
on the dimension of the training dataset, i.eDout⇥Dtrain.
It is important to stress the fact that, since both the
quantum map � and the post-processing layer are linear
in the input quantum states, QELMs cannot be a↵ected
by over-fitting. On the other hand, being the action
of classical reservoir not necessarily linear on the input
data, this is not generally true for classical ELMs. A
pictorial representation of QELM is shown in fig. 1.

FIG. 1. Pictorial representation of how QELM on classical
data works. Classical data are encoded in a physical system
from which we collect a set of measurements. The outcomes
undergo a linear post-processing which maps the outcomes
of the reservoir to the output of task.

Finally, to evaluate the system’s generalization capabili-
ties, we use a testing dataset along with its associated
probability matrix P

test. The performance is assessed
using a task-specific metric; for this work, we employ
the relative error between the reconstructed and testing
features:

✏ =
(ytestk � ypredk )2

(ytestk )2
⇤ 100. (4)

III. METHODOLOGY

In this section, we review the structure of the training
dataset, its pre-processing and the working of the QELM.

A. Dataset

As mentioned the aim is to build a quantum extreme
learning framework able to make atmospheric retrieval
of exoplanets. In particular, we are going to process
datasets of spectra generated by TauREx [69, 70]. Tau-
REx is an open-source Bayesian code for exoplanetary
atmospheric modeling and retrieval whichhandle allows
for the generation and retrieval of transmission, emis-
sion and reflection spectra over a wide range of com-
positions and physical parameters. TauREx computes
radiative transfer on exoplanetary atmospheres taking
into account di↵erent chemical and physical conditions
to produce the resulting spectrum. Its object-oriented
structure allows the inclusion of many di↵erent atmo-
spheric scenarios and it is widely used in the exoplanetary
community.

The dataset we used in this context is the same used in
[23]. It depends in particular on 4 parameters for the
molecular volume mixing ratios (CH4, CO2, CO,H2O)
and 3 physical parameters M,R, T , respectively, plan-
etary mass, radius and equilibrium temperature. We
assume a constant vertical profile for each volume mixing
ratio and isothermal temperature-pressure profile. Each
parameter has its lower and upper bounds and the inter-
vals are divided in 10 discrete values. Each spectrum is
generated by TauREx in the spectral range [0.3, 50]µm,
divided in 515 spectral bins, considering a combination
of randomly selected values for each parameter. Thus
we have 107 spectra available for training and testing. In
this work we process a sampled subset of 104 spectra for
both the training and the testing stage. All the details
regarding the lower and upper bound for each of the
atmospheric parameters are summarized in table I. This
dataset will be labeled as TauREx.

In order to test QELM in a more realistic scenario, we
considered a spectrum of HAT-P-18b [76], measured by
JWST and processed the TauREx spectra by interpo-
lating the same spectral binning of JWST in the spectral
range [0.6, 2.8]µm. This second dataset will be labeled
as JWST.

The JWST spectra have also been processed considering
shot noise obtained by a source of photons at T?=6460K.
The shot noise has been computed as shown in [77]. This
last dataset will be labeled as Noisy JWST (NJWST).

Finally, we considered one last dataset by filtering out
the shot noise with a pre-processing shown in the next
subsection and we are going to label it as Filtered JWST
(FJWST). In fig. 2 we show an example of all the
previously described data.

B. Data pre-processing

The first problem to solve in the context of quantum
machine learning in general is the encoding of high di-
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FIG. 6. Comparison between the parameters estimated with QELM and the real ones. The spectral data are generated using
atmospheric parameters which have a discrete distribution in the intervals reported in table I. The estimation of each value has
been obtained by making a bootstrap of the distributions obtained for each value. In the plot we show the lower and upper
bounds of the confidence interval obtained with the bootstrap, with a confidence level of 95%. The solid lines marked with
dots represent the estimation obtained with a finite statistics simulation using the JWST dataset with M=5 and a dataset of
D=4080 spectra divided in 75� 25% among training and testing. The dashed lines marked with squares represent the processing
of the same dataset made with IBM Fez.

olate the information about these physical parameters.
In appendix B we are going to show from the simulation
results that this issue could be solved with higher statis-
tics. It is important to stress that the results obtained
with IBM Fez are consistent with the simulation result,
thus proving fault tolerance to decoherence noise.

V. CONCLUSION AND FUTURE WORKS

In this work, we have shown that QELM is a promising
technique for the retrieval of exoplanetary atmospheres,
with both good accuracy and fast learning. Furthermore,
we have shown the fault tolerance of the algorithm on

an actual current quantum device, and we are confident
that with the advance of quantum technologies we are
going to achieve even faster data processing with fewer
simplifications and higher accuracy. Furthermore, we
are confident that with the current technology we can
already exploit this algorithm to integrate the current
forward models using the QELM solutions as ansatz for
classical atmospheric retrieval techniques, leading them
to converge faster. The QELM architecture presented
in this work highlights the potential of quantum compu-
tation in the analysis of astrophysics datasets and could
unlock, in the near future, the ability to perform e�-
cient spectral retrieval using more complex atmospheric
models.

(Vetrano+2025)

The Quantum 
computer of the IBM 

has been used to 
analyse simulated 

spectra of JWST
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Conclusions

• Deep learning algorithms are commonly used for astrophysical data
1. Develop libraries of training set + domain adaptation to fill the observational gap
2. Analyse NN output should be standard practices 
3. Normalizing flow and other techniques allow us to properly estimates errors

• Tools for data analysis (and not only) based on LLMs and Agents are 
starting to emerge and may have a large impact in the near future

• AI technologies are evolving very quickly and, as community, we should 
invest to exploit them, to define best practices and built up a know-how
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