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The need of Al for Astronomy
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Deep learning in Galactic Astronomy
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Scientific Al for astronomy: Domain adaptation

Domain adaptation to use models for training
(E.g. O'Brian+2021, Belfiore+2025)]
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ocientific Al for astronomy

Normalizing flows to calculate

posterior distribution New tools for interpretability
(e.g. Kang+2022, 2023, Iglesias- (e. g, Ambrosch+2023, Candebat,
Navarro+2024 Candebat+ 2024 Sacco+2024]
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Al 2.0;: Transformers and Foundation Models

Attention is all you need
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Al 2.0: Transformers and Foundation models

Self-Supervised Learning pre-training
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Foundation models in astronomy

Cost per 3B tokens (Size of astro-ph, USD)
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Foundation models in astronomy

High-level Overview

Task: Stellar Spectra to Stellar Parameters
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The multi-modal universe

Modality

Images

Hyperspectral Image

Time Series

Tabular

Source Survey

Legacy Surveys DR10 [43]
Legacy Surveys North [43, 134]
HSC [5, 3

BTS |56, 114, 120]
JWST][13, 14, 50]

Gaia BP/RP [59]
SDSS-II (1]

DESI [41

APOGEE SDSS-III [6]
GALAH [28]

Chandra (51|

VIPERS [126]

MaNGA SDSS-IV [2]
PLAsTICC?[138]

TESS [121, 33]

CfA Sample 68

YSE [7]

PS1 SNe Ia [127]

DES Y3 SNe Ia [24]

ba)
CSP SNe Ia (36, 135, 86]
Swift SNe Ia|26]
Gaia [59)
PROVABGS |[65]
Galaxy10 DECaLS (147, 92]

|
[
[y

N,

4
3
5
3

6-

&
n—-ca8|||||||

LI =~ R = S S S S

7

Shape

160x 160
152x152
160x 160
63x63
96x 96
110!
Variable
7081
7514
Variable
Variable
557
96x 96
Variable
Variable
Variable
Variable
[ariable
Variable
Variable
Variable
[ariable

Variable

umber o
samples

124M
15M
477K
400K
300K
220M
4M
1M
716k
325k
120K
91K
12k
3.5M
1M
1K
2K
369
248
239
180
134
117
220M
21K
15K

lain
science
Galaxies
Galaxies
Galaxies
Supernovae
Galaxies
Stars
Galaxies, Stars
Galaxies
Stars
Stars
Galaxies, Stars
Galaxies
Galaxies
Time-varying objects
Exoplanets, Stars
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Stars
Galaxy
Galaxy

(The multimodal Universe Collaboration 2024)
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Al 2.0: Al agents
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Al agents in Astronomy

lterate until quality acceptable

Borderline
GPT-5 / GPT-5-mini
Visual Inspector
-fi = & a3
wavelength .|| N ‘r“- %:,'AEL&Y e
Stellar Spectrum | calibration  fe
e _> | | \

=P Quality Metrics =P '
¥%, AMS, Good |

| |
Simultaneous fit of e
E continuum + all
lines in window

DIRECT FITTING

Line Catal 1 e '
i Iterate until quality acceptable

'— o ot | | w‘ ‘ Set Continuum| | Accept 1
i [

OUTPUT

EW Measurement ‘

Equivalent Width
Value (mA)

" Full Provenance |

Voigt parameters
(center, amplitude, o, y)

Continuum coefficients
LLM reasoning text
Iteration history

Unreliable fits

(b) Egent fit

Normalized Flux

6152 6153 6154 6155

Residuals (o)

6152 6153 6154 6155 6154

6155

Wavelength (A) Wavelength (A)

(Ting+20235]

Giornate RSN2, Napoli

Case 1: Blend Detection (Ca I 6696.02 A)

“The residuals show a pronounced W-shaped pattern
centered at the target (a positive excursion just blue-
ward of 6696.02 A and negative residuals at/just red-
ward), indicating a missed blend very close to the
target. The red fit looks symmetric while the data
shows asymmetry (suggesting two close components).
I will add an extra Voigt component to deblend the
pair at the blue-side shoulder near 6695.9 A.”

After adding peak: “The residuals no longer show a
W-shape at the target and the central RMS is 1.640,
which 1s within the acceptable range.”

The Capabilities of an
LLM to analyze plot
and define a strategy
are used to improve
the fit
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Quantum Artificial Intelligence
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Conclusions

* Deep learning algorithms are commonly used for astrophysical data

1. Develop libraries of training set + domain adaptation to fill the observational gap
2. Analyse NN output should be standard practices

3. Normalizing flow and other techniques allow us to properly estimates errors

* Tools for data analysis (and not only) based on LLMs and Agents are
starting to emerge and may have a large impact in the near future

* Al technologies are evolving very quickly and, as community, we should
invest to exploit them, to define best practices and built up a know-how
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