
BLIND ASTROMETRIC CALIBRATION FOR ALL-SKY
CAMERAS: AN AUTOMATIC ALGORITHM BASED ON

A BAYESIAN APPROACH

Annalisa Ghiberti

Dipartimento di Matematica Giuseppe Peano
Scuola di Scienze della Natura

M.Sc. in Stochastics and Data Science

Academic Year 2024/2025

1/20

Introduction: astrometric calibration

Astrometric calibration
Astrometric calibration is the process that
aligns astronomical images with their true
celestial coordinates, determining the
geometric transformation that maps image
pixel coordinates (x, y) to their correct
equatorial coordinates (α, δ), i.e. Right
Ascension and Declination.

N

S

δ

α

Earth

It allows us to place every detected source
at its correct position on the sky, and it
is essential for measuring the position, dis-
tance, and motion of celestial objects.

2/20

PRISMA: currently used astrometric calibration algorithm

PRISMA algorithm for each subset from one Julian Day:
1) Application of a rotation to every image.
2) Computation of Sun and Moon ephemerides.
3) Generation of a median flat frame.
4) Detection of bright sources and association to the respective catalog stars positions.

Computation of the expected positions of the stars, using inverse relations of the
astrometric projection: {

xcat = xC + rcat cos (acat − a0)
ycat = yC + rcat sin (acat − a0)

(x, y)→ (a, z)→ (acat, zcat)→ (xcat, ycat)

The algorithm is implemented using iteration: it starts from very bright stars and
gradually increases the magnitude limit.

3/20

Summary

New method for the astrometric calibration of all-sky camera images
The method, introduced by Astrometry.net, needs to be adapted to handle the severe
geometric distortions present in all-sky images.
(1) Identify patterns of four stars — quads — in the image and match them with

quads from a reference star catalog.
(2) Every match is tested by a verification criterion.
(3) Once a good match is found, the positions of the four stars are used to compute

the transformation between image coordinates and celestial coordinates.

A

B

C

D

Catalog

A

B

C

D

Image
A

B

C

D

Identification

4/20

Astrometry.net: preparation of the reference star catalog

Application of the bright source
detection process to the image.

Loading of the reference star catalog, generation of
quads and computation of their geometric hash codes.

Placing of a grid of equal-area sections over the sky
and selection of a fixed number of stars. Each cell
is visited to find a valid quad, but the algorithm

skips the stars that have been used too many times.

The process is repeated a certain number of times, and in the end the restriction on
the number of times a star can be used is removed for cells without acceptable quads.

5/20

Astrometry.net: computation of the geometric hash code of a quad

A

B

C

D
1

y

1
x

xC
xD

yC

yD

Figure: Quad hash code: (xC , yC , xD, yD)

Hash code
The most widely separated pair of stars is
identified to define a local coordinate
system, and the hash code is the
four-dimensional vector given by the
positions of the other pair of stars.

We require the following conditions: xC ≤ xD ∧ xC + xD ≤ 1 . This unique code
vector is invariant to translation, rotation and scaling of stars positions.

O0

P

Q

R

S

y

x
A1A1

D1

B1

C1

y

x
A2

D2

B2

C2

y

x
xCxD

yC

yD

1

1A3

B3

C3

D3

y

x

6/20

Astrometry.net: KD-tree data structure

(x1, y1, x′1, y′1)

(x2, y2, x′2, y′2) (x3, y3, x′3, y′3)

(x4, y4, x′4, y′4) (x5, y5, x′5, y′5) (x6, y6, x′6, y′6) (x7, y7, x′7, y′7)

x2 < x1 x3 > x1

y4 < y2 y5 > y2 y6 < y3 y7 > y3

Figure: KD-tree of geometric hash codes.

K-dimensional tree
A KD-tree is a binary tree in
which every node represents a
point in a K-dimensional
space. In this case, points are
geometric hash codes and the
space has 4 dimensions.

It has the following structure:
● every node contains a point

and the references to its left
child and right child nodes;

● every level is divided along
a different dimension.

7/20

Astrometry.net: Nearest Neighbor Search algorithm applied to a KD-tree

Nearest Neighbor Search algorithm
Once the tree is created, almost identical hash codes are found using the NNS method:

1) Starting from the root, the algorithm computes the distance between it and the
hash code in question.

2) It goes down following the side closer to the query.
3) When a leaf is reached, it saves the best point found.
4) It comes back going up, checking if there are better points in the other subtree.

If the distance between the query and the best point is greater than the distance
from the “division plane”, it has to search in the other branch.

5) Repeat until the root node is reached and the closest hash code is returned.

8/20

Astrometry.net: verification step for a candidate match

A verification criterion that exploits a Bayesian decision problem is applied.
The hypothesized alignment is computed and other stars that are within the bounds of
the image are retrieved.

Hypothesis verification
1) Computation of the Bayes factor K, where

● D is our data
● F is the foreground model
● B is the background model

K =
p(D|F)
p(D|B)

=
Nt∏
i=1

p(ti|F)
p(ti|B)

=

Nt∏
i=1

(
d

A
+

1− d

Nr

Nr∑
j=1

N (ti|rj , σ2
i,j)

)
Nt∏
i=1

1
A

2) If K > 109, the astrometric solution is accepted.
3) Else it is refused and the algorithm tries with another match.

9/20

PRISMA: preparation of the reference star catalog

Change of coordinates
(α, δ) −→ (a, z) ∈ [0◦, 360◦] × [0◦, 90◦]

Division of the catalog into spatial sections of 10◦ × 10◦ areas.

For each section, selection of a random star (a1, z1)
and compilation of a list of neighboring stars:

a1 − 10◦ ≤ a ≤ a1 + 10◦ ∧ z1 − 10◦ ≤ z ≤ z1 + 10◦

Attempt to form a quad.

Addition of the valid quad to the list and computation of its hash code.

If the list contains at least three elements

If its center lies within the section under consideration

10/20

PRISMA: preparation of the input image and search for a candidate match

From the image, PRISMA star detection algorithm extracts a list of pixel coordinates
of bright sources. To account for image distortion, we apply:

(x, y) −→ (θ, r) −→ (θ, φ)

Using these angular coordinates – directly comparable to the ones adopted for the
catalog – we repeat the procedure:

Division of detected bright sources into the same spatial sections.

Addition of valid quads to a new list and computation of their hash codes.

The selection of a random hash code and the application of the NNS procedure to the
KD-tree produce a candidate match:

• A : (x1, y1) ←→ star1 = (xcat
1 , ycat

1)
• B : (x2, y2) ←→ star2 = (xcat

2 , ycat
2)

• C : (x3, y3) ←→ star3 = (xcat
3 , ycat

3)
• D : (x4, y4) ←→ star4 = (xcat

4 , ycat
4)

11/20

PRISMA: verification step for a candidate match

Computation of the Bayes Factor K

● The test list consists of the bright sources detected in the image.
● The reference list contains catalog stars after being rotated according to the can-

didate match.

K := log10 K =
Nt∑
i=1

[
log10

(
d

A
+

1− d

Nr

Nr∑
j=1

N (ti|rj , σ2
i,j)

)
+ log10(A)

]
- A = 400× 400 px2 is the area of the selected square region centered at C

- Nt and Nr are the numbers of test and reference stars in the selected region

- d = max
{

1−
Nr

Nt
; 0.1

}
is the estimate of the fraction of distractors

- σ2
i,j = 5 is an estimate for the positional variance

The hypothesis is accepted if K is larger than a certain threshold.
Otherwise, the algorithm selects another random hash code and repeats the procedure.

12/20

PRISMA: analysis aimed at finding a suitable threshold for K

To establish a suitable threshold for K, we analyzed its behavior with 1200 catalog
stars while introducing different numbers of distractors – bright sources different from
stars:

Figure: K frequencies for simulations with 100, 300 and 500 distractors. Red bars correspond to
incorrect solutions, while green bars correspond to good estimates for the astrometric calibration.

The estimated threshold remains approximately K = 10 in every simulation and can
therefore be adopted for real PRISMA data.

13/20

PRISMA: results of a simulation

V is : 0.1264 ◦/px
a0 is : 5.000◦

K = 87.626 =⇒ Attempt n. 195 : the hypothesis is accepted.
The Nearest Neighbor of our random code

(-0.053, 0.228, 0.003, 0.511)
is:

(-0.064, 0.238, -0.016, 0.529)
The stars we identified thanks to this match are
• A: (180.245◦, 78.286◦)←→ *-f-Eri = (177.563◦, 80.312◦)

• B: (172.503◦, 74.910◦)←→ *-43-Eri = (169.917◦, 77.467◦)

• C: (180.040◦, 76.906◦)←→ *-g-Eri = (177.327◦, 78.911◦)

• D: (179.111◦, 75.454◦)←→ *-i-Eri = (176.378◦, 77.498◦)
Number of correctly identified stars = 4
Number of distractors = 0

14/20

PRISMA: results for a real image taken by ITTO09 camera (2024-11-03, 00:01:40)

V is : 0.1276 ◦/px
a0 is : 355.105 ◦

K= 44.202 =⇒ Attempt n. 176 : the hypothesis is accepted.
The Nearest Neighbor of our random code

(0.193, 0.810, 0.711, 0.289)
is:

(0.199, 0.807, 0.722, 0.310)

The stars we identified thanks to this match are
• A: (675.237 px, 175.876 px)←→ *-42-Peg = (675.351 px, 176.805 px)

• B: (619.131 px, 237.994 px)←→ *-70-Peg = (619.509 px, 239.115 px)

• C: (669.992 px, 218.910 px)←→ *-alf-Peg = (670.028 px, 219.737 px)

• D: (627.550 px, 197.155 px)←→ *-55-Peg = (627.193 px, 199.482 px)

15/20

PRISMA: results for a real image taken by ITER10 camera (2024-06-26, 21:04:22)

V is : 0.1272◦/px
a0 is : 8.849◦

K= 120.262 =⇒ Attempt n. 21 : the hypothesis is accepted.
The Nearest Neighbor of our random code

(0.269, 0.576, 0.633, -0.012)
is:

(0.268, 0.599, 0.641, 0.008)

The stars we identified thanks to this match are
• A: (567.591 px, 883.730 px)←→ *-mu.01-Her = (568.922 px, 882.135 px)

• B: (562.840 px, 803.230 px)←→ *-eps-Her = (564.567 px, 801.724 px)

• C: (546.446 px, 863.218 px)←→ *-lam-Her = (546.770 px, 861.738 px)

• D: (588.454 px, 824.787 px)←→ *-u-Her = (589.127 px, 822.904 px)

16/20

PRISMA: results for a real image taken by ITER10 camera (2024-06-26, 21:44:22)

V is : 0.1278◦/px
a0 is : 8.794◦

K= 10.335 =⇒ Attempt n. 12 : the hypothesis is accepted.
The Nearest Neighbor of our random code

(0.338, 1.062, 0.372, 0.820)
is:

(0.323, 1.037, 0.375, 0.811)

The stars we identified thanks to this match are
• A: (748.842 px, 916.098 px)←→ *-del-Cyg = (748.200 px, 913.058 px)

• B: (804.095 px, 962.181 px)←→ *-alf-Cyg = (802.955 px, 961.535 px)

• C: (791.835 px, 928.167 px)←→ *-omi02-Cyg = (790.574 px, 926.712 px)

• D: (784.058 px, 931.782 px)←→ *-31-Cyg = (783.449 px, 930.696 px)

17/20

PRISMA: results for a real image taken by ITLO06 camera (2023-04-26, 20:04:23)

V is : 0.1665◦/px
a0 is : 336.474◦

K= 38.886 =⇒ Attempt n. 10 : the hypothesis is accepted.
The Nearest Neighbor of our random code

(-0.172, 0.304, 0.106, 1.037)
is:

(-0.164, 0.280, 0.119, 1.025)

The stars we identified thanks to this match are
• A: (754.963 px, 459.597 px)←→ *-eps-Aur = (753.933 px, 460.348 px)

• B: (684.100 px, 415.706 px)←→ *-tet-Aur = (683.240 px, 416.641 px)

• C: (740.465 px, 471.148 px)←→ *-alf-Aur = (740.639 px, 471.347 px)

• D: (697.685 px, 463.268 px)←→ *-bet-Aur = (697.195 px, 463.244 px)

18/20

Conclusions

● Overall, the algorithm provides a solid starting point for a new reliable
astrometric calibration of all-sky cameras.

● Future work could focus on improving the model, handling varying star visibility
more effectively, and increasing robustness under challenging observing conditions.

● It is possible to adapt blind astrometric calibration techniques to all-sky images,
as long as the geometric distortions are properly accounted for.

● Tests on PRISMA data confirm that the method performs reliably under favorable
conditions.

THANK YOU
for your

ATTENTION

19/20

Bibliography

[1] D. Barghini, D. Gardiol, A. Carbognani, and S. Mancuso, “Astrometric
Calibration for All-sky Cameras revisited,” Astronomy & Astrophysics, vol. 626,
A105, 2019.

[2] D. Lang, D. W. Hogg, K. Mierle, M. Blanton, and S. Roweis, “Astrometry.net:
Blind Astrometric Calibration of Arbitrary Astronomical Images,” The
Astronomical Journal, vol. 139, pp. 1782–1800, 2010.

[3] D. Lang, “Astrometry.net: Automatic recognition and calibration of astronomical
images,” Ph.D. dissertation, University of Toronto, 2009.

[4] M. Skrodzki, “The k-d tree data structure and a proof for neighborhood
computation in expected logarithmic time,”, 2019. arXiv: 1903.04936 [cs.DS].

[5] H. J. Wolfson, “Geometric Hashing: An Overview,” IEEE Computational Science
& Engineering, vol. 4, pp. 10–21, 1997.

[6] J. Gerhard, “A geometric hashing technique for star pattern recognition,” Ph.D.
dissertation, WVU, 2016.

20/20

https://arxiv.org/abs/1903.04936

Hash Code: pseudocode (1/2)

Hash Code for Quads

1: function BuildHashCode(quad)
2: P ← quad.point1
3: Q← quad.point2
4: R← quad.point3
5: S ← quad.point4
6: distances←

[
P Q, P R, P S, QR, QS, RS

]
7: m← max(distances)
8: A← one endpoint of the segment
9: B ← other endpoint of the segment

10: C ← one of the remaining two points
11: D ← last remaining point

▷ First step: translation
12: A1 ← A− A
13: B1 ← B − A
14: C1 ← C − A
15: D1 ← D − A

▷ Second step: rotation
16: θ ← π

4 − arctan
(yB1

xB1

)
17: Mrot ← rotation matrix
18: A2 ←Mrot · A1
19: B2 ←Mrot · B1
20: C2 ←Mrot · C1
21: D2 ←Mrot ·D1
22: end function

Hash Code: pseudocode (2/2)

Hash Code for Quads

21: function BuildHashCode(quad)
▷ Third step: scaling

22: s← 1
yB2

23: A3 ← s · A2
24: B3 ← s · B2
25: C3 ← s · C2
26: D3 ← s ·D2

▷ Conditions
27: if xC3 ≤ xD3 ∧ xC3 + xD3 ≤ 1 then
28: return Code(xC3 , yC3 , xD3 , yD3)
29: else if xC3 > xD3 ∧ xC3 + xD3 ≤ 1 then
30: return Code(xD3 , yD3 , xC3 , yC3)
31: end if
32: if xC3 ≥ xD3 ∧ xC3 + xD3 > 1 then
33: return Code(1− xC3 , 1− yC3 , 1− xD3 , 1− yD3)
34: else if xC3 < xD3 ∧ xC3 + xD3 > 1 then
35: return Code(1− xD3 , 1− yD3 , 1− xC3 , 1− yC3)
36: end if
37: end function

KD-tree: pseudocode

Algorithm: KD-tree

1: function KD-tree(P)
2: if |P | = 0 then
3: return empty tree
4: else if |P | = 1 then
5: return tree with only one node
6: else
7: d′ ← depth % d (or d′ ← most spread dimension)
8: q ← median according to d′

9: P1 ← {pi ∈ P | pd′
i ≤ qd′

, pi ̸= q}
10: P2 ← {pi ∈ P | pd′

i ≥ qd′
, pi ̸= q}

11: H ← {x ∈ Rd | xd′
= qd′

}
12: Tl ← KD-tree(P1)
13: Tr ← KD-tree(P2)
14: return node containing q, H with Tl as left child and Tr as right child
15: end if
16: end function

KD-tree: toy example

P =
{

(1, 7); (9, 3); (5, 4); (2, 5); (8, 10); (6, 7); (11, 2)
}
̸= ∅

1) First step: KD-tree(P)
d′ = 1
q = (6, 7)
P1 = {(1, 7); (2, 5); (5, 4)}
P2 = {(8, 10); (9, 3); (11, 2)}

2) Second step: KD-tree(P1)
d′ = 2
q = (2, 5)
P ′

1 = {(5, 4)}
P ′

2 = {(1, 7)}
3) Third step: KD-tree(P ′

1)
|P ′

1| = 1→ (5, 4) is a leaf (left child of (2, 5))
3) Third step: KD-tree(P ′

2)
|P ′

2| = 1→ (1, 7) is a leaf (right child of (2, 5))
2) Second step: KD-tree(P2)

d′ = 2
q = (9, 3)
P ′′

1 = {(11, 2)}
P ′′

2 = {(8, 10)}
3) Third step: KD-tree(P ′′

1)
|P ′′

1 | = 1→ (11, 2) is a leaf (left child of (9, 3))
3) Third step: KD-tree(P ′′

2)
|P ′′

2 | = 1→ (8, 10) is a leaf (right child of (9, 3))

(6,7)

(2,5)

(5,4) (1,7)

(9,3)

(11,2) (8,10)

x

y y

NNS: pseudocode

Algorithm: Nearest Neighbor Search

1: function NNS(current_node, p, current_best)
2: if current_node is null then
3: return current_best
4: end if
5: d← distance(p, current_node)
6: if d < current_best.distance then
7: current_best← current_node.point
8: end if
9: dim← current_node.dim

10: delta← | p[dim]− current_node[dim] |
11: if p[dim] < current_node[dim] then
12: current_best = NNS(current_node.left, p, current_best)
13: if delta < current_best.distance then
14: current_best = NNS(current_node.right, p, current_best)
15: end if
16: else
17: current_best = NNS(current_node.right, p, current_best)
18: if delta < current_best.distance then
19: current_best = NNS(current_node.left, p, current_best)
20: end if
21: end if
22: return current_best
23: end function

NNS: toy example
Find the Nearest Neighbor of (8, 9).

1) We call NNS((6, 7), (8, 9), (6, 7)):
current_node := (6, 7)
p := (8, 9)
current_best := (6, 7)
d :=

√
(8− 6)2 + (9− 7)2 = 2

√
2

dim := 1
δ := |8− 6| = 2

2) Since 8 > 6 we call NNS((9, 3), (8, 9), (6, 7)):
current_node = (9, 3)
p = (8, 9)
current_best = (6, 7)
d =

√
(8− 9)2 + (9− 3)2 =

√
37 > 2

√
2

dim = 2
δ = |9− 3| = 6

3) Since 9 > 3 we call NNS((8, 10), (8, 9), (6, 7)):
current_node = (8, 10)
p = (8, 9)
current_best = (6, 7)
d =

√
(8− 8)2 + (9− 10)2 = 1

Since 1 < 2
√

2, we get current_best = (8, 10)
which is a leaf. This is our first candidate.

(6,7)

(2,5)

(5,4) (1,7)

(9,3)

(11,2) (8,10)

x

x y

NN of (8,9)

item
2) δ = 6 > 1 = current_best.dist, so we do not explore the left subtree from the second level.

1) δ = 2 > 1 = current_best.dist, so we do not explore the left subtree from the first level.

Verification criterion: a Bayesian decision problem

Bayes Factor
Given a reference list and a test list of stars, which are our data D, the Bayes Factor is

K =
p(D|F)
p(D|B)

We have to consider the prior p(F)/p(B), which is typically set to a very small
number (10−6), and the utility table:

Reality

True alignment False alignment

Decision
Accept u(T P) = +1 u(F P) = −1999

Reject u(F N) = −1 u(T N) = +1

The decision to accept or reject the alignment is taken by computing the expected
utility E[u] for each decision.

Verification criterion: a Bayesian decision problem

• E[u | Accept , D] = u(T P) · p(T P |D) + u(F P) · p(F P |D)
= u(T P) · p(F |D) + u(F P) · p(B|D)

• E[u | Reject , D] = u(F N) · p(F N |D) + u(T N) · p(T N |D)
= u(F N) · p(F |D) + u(T N) · p(B|D)

The alignment is accepted if
E[u | Accept , D] > E[u | Reject , D]

⇐⇒ u(T P) · p(F |D) + u(F P) · p(B|D) > u(F N) · p(F |D) + u(T N) · p(B|D)
⇐⇒ p(F |D) · [u(T P)− u(F N)] > p(B|D) · [u(T N)− u(F P)]

⇐⇒
p(F |D)
p(B|D)

>
u(T N)− u(F P)
u(T P)− u(F N)

⇐⇒
p(D|F)
p(D|B)︸ ︷︷ ︸

=:K

·
p(F)
p(B)

>
u(T N)− u(F P)
u(T P)− u(F N)

by Bayes’ Theorem

⇐⇒ K >
p(B)
p(F)

·
u(T N)− u(F P)
u(T P)− u(F N)

⇐⇒ K >
1

10−6 ·
1− (−1999)

1− (−1)
= 109

PRISMA: candidate match hypothesis

A : (x1, y1) ←→ (a1, z1)
B : (x2, y2) ←→ (a2, z2)
C : (x3, y3) ←→ (a3, z3)
D : (x4, y4) ←→ (a4, z4)

● Estimate of the linear plate scale V : the mean of

Vi :=
zi − S(eDri − 1)

ri
∀ i ∈ {1, 2, 3, 4}

only if V − 1
60
◦/px < Vi < V + 1

60
◦/px ∀ i = 1, 2, 3, 4

● Estimate of a0: the mean of

a0,i = zi − arctan
(

yi − yC

xi − xC

)
∀ i ∈ {1, 2, 3, 4}

only if a0 − 5◦ < a0,i < a0 + 5◦ ∀ i = 1, 2, 3, 4

The estimate of a0 is then used to convert catalog coordinates in pixels
for the computation of K.

PRISMA: analysis aimed at finding a suitable threshold for K

number of
distractors notable doubtful solutions (K values) estimated

threshold for K

0 -79.2 10

100 -167.7 10

200 -203.7,-139.7,-51.1,-19.5,68.0 10

300 -170.4,-21.5,-113.7,-10.5 10

400 -25.0,-24.5 10

500 -95.3,-2.9 10

Table: Summary of the results for the estimation of a threshold for K, in the setting with a fixed
number of 1200 catalog stars and different fractions of distractors.

Results for images acquired by ITTO09 and ITLO06 cameras

image conditions

number
of

detected
sources

number
of

solutions
[/100]

mean
number

of
attempts

mean
K

mean
a0

[355◦]

mean
V

[0.126◦/px]

mean
time
[′ ′′]

ITTO09
2024-11-03

00:01:40

cloudless sky,
Moon below
the horizon

1238 83 130 35.89 355.19 0.128 1′

16′′

image conditions

number
of

detected
sources

number
of

solutions
[/100]

mean
number

of
attempts

mean
K

mean
a0

[336.3◦]

mean
V

[0.166◦/px]

mean
time
[′ ′′]

ITLO06
2023-04-26

20:04:23

cloudless sky,
Moon 50◦

above the
horizon at
40% phase

352 15 14 30.11 336.98 0.167 6′′

ITLO06
2023-04-27

00:09:20

cloudless sky,
Moon below
the horizon

380 100 11 48.29 336.38 0.167 9′′

Results for images acquired by ITER10 camera

image conditions

number
of

detected
sources

number
of

solutions
[/100]

mean
number

of
attempts

mean
K

mean
a0

[8.5◦]

mean
V

[0.126◦/px]

mean
time
[′ ′′]

ITER10
2024-06-26

21:04:22

a few clouds,
Moon below
the horizon

459 100 20 106.02 8.61 0.127 19′′

ITER10
2024-06-26

21:24:22

majority of the
sky covered by
clouds, Moon

below the
horizon

137 - - - - - -

ITER10
2024-06-26

21:44:22

some clouds
covering nearly

50% of the
field of view,
Moon below
the horizon

275 85 17 9.85 8.81 0.128 6′′

ITER10
2024-06-26

22:44:22

cloudless sky,
Moon below
the horizon

1285 100 48 90.22 8.70 0.127 1′ 5′′

ITER10
2024-06-27

01:54:23

cloudless sky,
Moon 30◦

above the
horizon at

70% phase

951 99 49 114.55 8.70 0.127 1′

PRISMA: possible improvements

● The current algorithm is not suitable for images with high cloud coverage.

● Enhancements to the data structure of the KD-tree and to the performance of
the NNS algorithm could reduce computational costs and increase robustness.

● Estimation of parameters: our implementation of the algorithm is not blind,
because we used estimates for some parameters due to the distortion of all-sky
cameras. PRISMA can already estimate the distortion parameters (V, S, D), but
an automatic procedure to determine the image center C without prior
knowledge still has to be developed.

PRISMA: issues in the simplified formula used for the Bayes Factor

● Reference stars and test stars are treated asymmetrically.

● The choice of a uniform background distribution is not optimal.

● The number of reference and test stars affects the behavior and performance of
the model:

- If the reference list contains only a few stars, each correctly matched test
star produces a large increase in the Bayes Factor.

- When the reference list contains many stars, correctly matched test stars
lead to a slower increase in the Bayes Factor.

- If the test list contains stars that are absent from the reference list, as more
such stars are included, the Bayes Factor decreases steadily.

● “Lucky donut” effect: it is possible for several test stars to be associated to the
same reference star, or the other way around.

	References

