BLIND ASTROMETRIC CALIBRATION FOR ALL-SKY

CAMERAS: AN AUTOMATIC ALGORITHM BASED ON
| A BAYESIAN APPROACH

O DI MATEMATICA GIU
A DI SCIENZE DELLA NA
N STOCHASTICS AND DATA

R 2024/2025

1/20



Introduction: astrometric calibration

Astrometric calibration

Astrometric calibration is the process that
aligns astronomical images with their true
celestial coordinates, determining the
geometric transformation that maps image
pixel coordinates (z,y) to their correct
equatorial coordinates (e, d), i.e. Right
Ascension and Declination.

It allows us to place every detected source
at its correct position on the sky, and it
is essential for measuring the position, dis-
tance, and motion of celestial objects.

u}
8
I
i
it

D

2/20



PRISMA: currently used astrometric calibration algorithm

PRISMA algorithm for each subset from one Julian Day:

1) Application of a rotation to every image.
2) Computation of Sun and Moon ephemerides.
3) Generation of a median flat frame.

4) Detection of bright sources and association to the respective catalog stars positions.

Computation of the expected positions of the stars, using inverse relations of the
astrometric projection:

Tcat = TC + Tcat COS (acat — a0)
Yeat = YC + Tcat Sin (acat - aO)
(1'7 y) — (a'a Z) — (acat, ant) — (-Tcat’ ycat)

The algorithm is implemented using iteration: it starts from very bright stars and
gradually increases the magnitude limit.

(PN G4
3/20



New method for the astrometric calibration of all-sky camera images

The method, introduced by Astrometry.net, needs to be adapted to handle the severe
geometric distortions present in all-sky images.

(1) Identify patterns of four stars — quads — in the image and match them with
quads from a reference star catalog.

(2) Every match is tested by a verification criterion.

(3) Once a good match is found, the positions of the four stars are used to compute
the transformation between image coordinates and celestial coordinates.

¢ B
D o B
D L]
N L] H L4
. C C
A A
Catalog Image Identification

u}
8
l
n
it

(PN G4
4/20



Astrometry.net: preparation of the reference star catalog

Application of the bright source

detection process to the image.

Loading of the reference star catalog, generation of

quads and computation of their geometric hash codes.

Placing of a grid of equal-area sections over the sky

and selection of a fixed number of stars. Each cell

is visited to find a valid quad, but the algorithm

skips the stars that have been used too many times.

R A

e

The process is repeated a certain number of times, and in the end the restriction on

7

the number of times a star can be used is removed for cells without acceptable quads

DA

5/20



Astrometry.net: computation of the geometric hash code of a quad

The most widely separated pair of stars is
identified to define a local coordinate
system, and the hash code is the
four-dimensional vector given by the
positions of the other pair of stars.

Figure: Quad hash code: (zc, ye, zp,yp)

We require the following conditions: | o <zxp | A | zco +xp < 1| This unique code
vector is invariant to translation, rotation and scaling of stars positions.

u}
8
l

I
it

(PN G4
6/20



Astrometry.net: KD-tree data structure

P K-dimensional tree

A KD-tree is a binary tree in
which every node represents a
point in a K-dimensional
space. In this case, points are
geometric hash codes and the
space has 4 dimensions.

(22, y2, 7, yh) (23,3, 2%, y5)

((z4yy4,zﬁ.,y£)) ((25,y5,zg,yg)) ((ZGYya,z’s,y{;)) ((m,ynz;,yé))

It has the following structure:
® every node contains a point
and the references to its left
child and right child nodes;

® every level is divided along
Figure: KD-tree of geometric hash codes. a different dimension.

u}
8
l
n
it

(PN G4
7/20



Astrometry.net: Nearest Neighbor Search algorithm applied to a KD-tree

Nearest Neighbor Search algorithm

Once the tree is created, almost identical hash codes are found using the NNS method:

1) Starting from the root, the algorithm computes the distance between it and the
hash code in question.

2) It goes down following the side closer to the query.
3) When a leaf is reached, it saves the best point found.

4) It comes back going up, checking if there are better points in the other subtree.

If the distance between the query and the best point is greater than the distance
from the “division plane”, it has to search in the other branch.

5) Repeat until the root node is reached and the closest hash code is returned.

o« = E T 9ae
8/20



Astrometry.net: verification step for a candidate match

A verification criterion that exploits a Bayesian decision problem is applied.
the image are retrieved.

The hypothesized alignment is computed and other stars that are within the bounds of
Hypothesis verification

1) Computation of the Bayes factor K, where

e D is our data

e I is the foreground model

e B is the background model

Sra ot

— 2
» (z o LNl )
_ p(DIF) _ T p(talF) _ i

013) ~ L (m)

j=1

N,
Il
A
i=1
2) If K > 10, the astrometric solution is accepted.

3) Else it is refused and the algorithm tries with another match.




PRISMA: preparation of the reference star catalog
Change of coordinates
(a,8) — (a,2) € [0°,360°] x [0°,90°]
3

Division of the catalog into spatial sections of 10° x 10° areas.

~

For each section, selection of a random star (a1, 21)

and compilation of a list of neighboring stars:

a1 —10° <a<a; +10° A 21 —10° <z < z; + 10°
If the list contains at| least three elements
b
Attempt to form a quad.
If its center lies within the

h

Addition of the valid quad to the list and computation of its hash code.
Qust i 00080

section under consideration

Quads in (30,601x(30,60]

DA

10/20



PRISMA: preparation of the input image and search for a candidate match

From the image, PRISMA star detection algorithm extracts a list of pixel coordinates
of bright sources. To account for image distortion, we apply:

(@,y) — (0,7) — (6,%)

Using these angular coordinates — directly comparable to the ones adopted for the
catalog — we repeat the procedure:

| Division of detected bright sources into the same spatial sections. I

~

I Addition of valid quads to a new list and computation of their hash codes. I

The selection of a random hash code and the application of the NNS procedure to the
KD-tree produce a candidate match:

o A (z1,y1) ¢ stary = (2§, y§)
e B (z2,y2) < stara = (x5, y5et)
o C: (z3,y3) ¢ starg = (z5°0, y5)

o D : (x4,ys) +— stary = (x5°%, y5o")

u}
8
l
n
it

(PN G4
11/20



PRISMA: verification step for a candidate match

Computation of the Bayes Factor K
e The test list consists of the bright sources detected in the image
didate match.

e The reference list contains catalog stars after being rotated according to the can-
= log;o K = Z [108'10 ( + — ZN("’J%UH ) +10g10(A)]
- A =400 x 400 px? i

_0'2

is the area of the selected square region centered at C
- Nt and N, are the numbers of test and reference stars in the selected region
N,
- d = max {1 - —’ ;0.1
%7

} is the estimate of the fraction of distractors
= 5 is an estimate for the positional variance
The hypothesis is accepted if K is larger than a certain threshold

Otherwise, the algorithm selects another random hash code and repeats the procedure

DA

12/20




PRISMA: analysis aimed at finding a suitable threshold for K

To establish a suitable threshold for K, we analyzed its behavior with 1200 catalog

stars while introducing different numbers of distractors — bright sources different from
stars:

Histogram Histogram Histogram

Histogram Histogram Histogram

| | | L | L | | L I L L . s |
200 By g oo 200 e 160 g oo 500 e 150 g oo 00
Kualue Kualve Kuaive

Figure: K frequencies for simulations with 100, 300 and 500 distractors. Red bars correspond to
incorrect solutions, while green bars correspond to good estimates for the astrometric calibration.

The estimated threshold remains approximately K = 10 in every simulation and can
therefore be adopted for real PRISMA data.

u}
8
l
n
it

(PN G4
13/20



PRISMA: results of a simulation

Vis: 0.1264 ° /px
ap is : 5.000°
K = 87.626 == Attempt n. 195 : the hypothesis is accepted.
The Nearest Neighbor of our random code
(-0.053, 0.228, 0.003, 0.511)
is:
(-0.064, 0.238, -0.016, 0.529)
The stars we identified thanks to this match are
o A: (180.245°, 78.286°) «— *-f-Eri = (177.563°, 80.312°)
e B: (172.503°, 74.910°) <— *-43-Eri = (169.917°, 77.467°)
e C: (180.040°, 76.906°) «— *-g-Eri = (177.327°, 78.911°)
e D: (179.111°, 75.454°) «— *.i-Eri = (176.378°, 77.498°)

Number of correctly identified stars = 4
Number of distractors = 0

30 T

80
25

20 40 | 3

Frequency
w
H
T
Il
Frequency

Iy 9
° °
T T T

20 E

ol b b b L F

S T xy

o =) = = £ DA
14/20



Vis: 0.1276 ° /px
ag is : 355.105 °
K= 44202 = Attempt n. 176 : the hypothesis is accepted.
The Nearest Neighbor of our random code
(0.193, 0.810, 0.711, 0.289)
is:
(0.199, 0.807, 0.722, 0.310)

The stars we identified thanks to this match are
o A: (675.237 px, 175.876 px) «— *-42-Peg = (675.351
e B: (619.131 px, 237.994 px) +—+ *-70-Peg = (619.500
e C: (669.992 px, 218.910 px) +— *-alf-Peg = (670.028

o D: (627.550 px, 197.155 px) <— *55-Peg = (627.193

px, 176.805 px)
px, 239.115 px)
px, 219.737 px)
px, 199.482 px)

1020 30 40 50 6
3

3558

3556

3554

3552

3550

3508

3546

3504

01281

01280

01279

01278

01277

01276

(PN G4
15/20



PRISMA: results for a real image taken by ITER10 camera (2024-06-26, 21:04:22)

Vis: 0.1272° /px
ag is : 8.849°
K= 120.262 = Attempt n. 21 : the hypothesis is accepted.
The Nearest Neighbor of our random code
(0.269, 0.576, 0.633, -0.012)
Is:
(0.268, 0.599, 0.641, 0.008)

The stars we identified thanks to this match are
e A: (567.591 px, 883.730 px) «— *-mu.01-Her = (568.922 px, 882.135 px)
562.840 px, 803.230 px) «—> *-eps-Her = (564.567 px, 801.724 px)

e B: (
o C: (546.446 px, 863.218 px) <— *-lam-Her = (546.770 px, 861.738 px)
o D: (588.454 px, 824.787 px) «—> *u-Her = (589.127 px, 822.904 px)

94 0129

o128~ B

027}~ B

0126 |- B

L
80 56100 110 120 8o g o128 v
K

o = = E = 9acn
16/20



PRISMA: results for a real image taken by ITER10 camera (2024-06-26, 21:44:22)

Vis: 0.1278° /px
ag is : 8.794°
K= 10.335 = Attempt n. 12 : the hypothesis is accepted.
The Nearest Neighbor of our random code
(0.338, 1.062, 0.372, 0.820)
Is:
(0.323, 1.037, 0.375, 0.811)

The stars we identified thanks to this match are
o A: (748.842 px, 916.098 px) «—» *-del-Cyg = (748.200 px, 913.058 px)
B: (804.095 px, 962.181 px) <— *-alf-Cyg = (802.955 px, 961.535 px)

e C: (791.835 px, 928.167 px) «— *-omi02-Cyg = (790.574 px, 926.712 px)
D: (784.058 px, 931.782 px) «—> *-31-Cyg = (783.449 px, 930.696 px)

883 ) 1.2805x10" [

1.2800x10" [

12795x10" [

12790%10" [

12785%10" [

12780x10" [

12775%10" F

879 L 12770x10" o

o ] = =

(PN G4
17/20



PRISMA: results for a real image taken by ITLO06 camera (2023-04-26, 20:04:23)

Vis: 0.1665° /px
ag is : 336.474°
K= 38.886 = Attempt n. 10 : the hypothesis is accepted.
The Nearest Neighbor of our random code
(-0.172, 0.304, 0.106, 1.037)
1s:
(-0.164, 0.280, 0.119, 1.025)

The stars we identified thanks to this match are
o A: (754.963 px, 459.507 px) +— *-eps-Aur = (753.933 px, 460.348 px)
e B: (684.100 px, 415.706 px) <— *-tet-Aur = (683.240 px, 416.641 px)
e C: (740.465 px, 471.148 px) <— *-alf-Aur = (740.639 px, 471.347 px)
e D: ( ) «—

697.685 px, 463.268 px *bet-Aur = (697.195 px, 463.244 px)

3385 01674

3380 - 4 oaenf- -

3375 + oaerf- B

3370 + oaess- -

3365 - 4 oaess - B

3360 - 4 oaesaf- -

152025 3035 40 P2 50 01662 v
K

u}
8
I
i
it

(PN G4
18/20



Conclusions

o Overall, the algorithm provides a solid starting point for a new reliable
astrometric calibration of all-sky cameras.

e Future work could focus on improving the model, handling varying star visibility
more effectively, and increasing robustness under challenging observing conditions.

e It is possible to adapt blind astrometric calibration techniques to all-sky images,
as long as the geometric distortions are properly accounted for.

e Tests on PRISMA data confirm that the method performs reliably under favorable
conditions.

THANK YOU
for your

ATTENTION

u}
8
l
n
it

(PN G4
19/20



Bibliography

[1] D. Barghini, D. Gardiol, A. Carbognani, and S. Mancuso, “Astrometric
Calibration for All-sky Cameras revisited,” Astronomy & Astrophysics, vol. 626,
A105, 2019.

[2] D. Lang, D. W. Hogg, K. Mierle, M. Blanton, and S. Roweis, “Astrometry.net:
Blind Astrometric Calibration of Arbitrary Astronomical Images,” The
Astronomical Journal, vol. 139, pp. 1782-1800, 2010.

[3] D. Lang, “Astrometry.net: Automatic recognition and calibration of astronomical
images,” Ph.D. dissertation, University of Toronto, 2009.

[4] M. Skrodzki, “The k-d tree data structure and a proof for neighborhood
computation in expected logarithmic time,”, 2019. arXiv: 1903.04936 [cs.DS].

[5] H. J. Wolfson, “Geometric Hashing: An Overview,” |IEEE Computational Science
& Engineering, vol. 4, pp. 10-21, 1997.

[6] J. Gerhard, “A geometric hashing technique for star pattern recognition,” Ph.D.
dissertation, WVU, 2016.

=] = = = = 9HAE
20/20


https://arxiv.org/abs/1903.04936

Hash Code: pseudocode (1/2)

Hash Code for Quads

1: function BuiLDHASHCODE(quad)
2: P < quad.pointl
3 Q < quad.point2
4: R + quad.point3
5: S + quad.pointd
6:  distances « [PQ, PR, PS,0R, Q5, RS]
7 m < max(distances)
8 A < one endpoint of the segment
9: B < other endpoint of the segment
10: C' < one of the remaining two points
11: D < last remaining point
> First step: translation
12 A+~ A-—A
13: B+ B—A
14: Ci+—C—-A
15: D+ D—-A
> Second step: rotation

y

16: 0 < & — arctan (wBl )
By

17: M.+ + rotation matrix

18: Ao +— Mo - Aq
19: Bs «+ Mot - B1
20: Cy <+ Mot - C1
21: Dy < Myot - D1

DA

O
&
I
|
i



Hash Code: pseudocode (2/2)

Hash Code for Quads

22:

23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37: end function

21: function BUILDHASHCODE(quad)

1
SFE
A3(—S~A2
B3 «+ s- B
C3<—S'02
D3 < s- Do

if TCog < TpDg A TCg +$D3 < 1 then

return Code(xcy, YC3s TD3s YD3)
else if tc; > zp; A 2oy +py; < 1 then

return Code(a:Dg,yDy z037y03)
end if
if tc, > xpy; N xcy +xpy > 1 then

return Code(l — Tog,1 — yog,1 — Tpg, 1 — Ypy)
else if rc; < zp; A zog +pg > 1 then

return Code(1 — 2py,1 — ypy,1 —x0oy, 1 — ycy)
end if

> Third step: scaling

> Conditions

DA



KD-tree: pseudocode

Algorithm: KD-tree

1: function KD-TREE(P)

2 if |P| = 0 then

3 return empty tree

4 else if |P| = 1 then

5: return tree with only one node

6 else

7 d’ <+ depth % d (or d’ < most spread dimension)
8 q < median according to d’

9: Pr{pie P|p? <q¥ pi#q}

10: Py {p; € P|pl >q% pi #q}

11: H(—{xG]Rndd/:qd/}
12: T; < KD-TREE(Py)
13: Ty < KD-TREE(P2)
14: return node containing g, H with T} as left child and T} as right child
15: end if

16: end function

u}
8
l
n
it

DA



KD-tree: toy example

P ={(1,7);(9,3); (5,4); (2,5); (8,10); (6,7); (11,2) } # @
1) First step: KD-tree(P)
d =1

q=(6,7)
Py ={(1,7);(2,5); (5,4)}
P> = {(8,10);(9,3); (11,2)}

2) Second step: KD-tree(P;)
d =2

q=(2,5) @
Py ={(5,4)}
P, = {(1,7)}

3) Third step: KD-tree(P;)

y y
|P/| =1 — (5,4) is a leaf (left child of (2,5))
3) Third step: KD-tree(Py)
|Py| =1 — (1,7) is a leaf (right child of (2,5))
2) Second step: KD-tree(Ps)

) @) @) @)
q=1(9,3)
P]:’ = {(11 2)}
"={(8,10)}
3) Third step: KD-tree(P;’)
[P/l =1 — (11,2) is a leaf (left child of (9, 3))
3) Third step: KD-tree(P,’)
|Py| =1 — (8,10) is a leaf (right child of (9, 3))

u}
8
l
n
it

DA



NNS: pseudocode

Algorithm: Nearest Neighbor Search

1: function NNS(current_node, p, current_best)

2: if current_node is null then

3: return current_best

4: end if

5: d < distance(p, current_node)

6: if d < current_best.distance then

7: current_best < current_node.point

8: end if

9: dim < current_node.dim

10: delta + | p[dim] — current_node[dim] |

11: if p[dim] < current_node[dim] then

12: current_best = NNS(current_node.left, p, current_best)
13: if delta < current_best.distance then

14: current_best = NNS(current_node.right, p, current_best)
15: end if

16: else

17: current_best = NNS(current_node.right, p, current_best)
18: if delta < current_best.distance then
19: current_best = NNS(current_node.left, p, current_best)
20: end if
21: end if
22: return current_best

23: end function

u}
8
l
n
it

DA



NNS: toy example

Find the Nearest Neighbor of (8,9).
1) We call NNS((6,7),(8,9),(6,7)):
)

current_node := (6,
current_best := (6,7)
d:=+/(8-6)24(9—-T7)2 =22
dim =1
=|8—6]=2
2) Since 8 > 6 we call NN S((9,3),(8,9), (6,7)):
current_node = (9, 3)
p=(89)
current_best = (6,7)
(8—9)2 +(9—3)2 =37 > 23
dim =2
§=19-3=6
3) Since 9 > 3 we call NN S((8,10),(8,9),(6,7)):
current_node = (8, 10)
p=(89) R
current_best = (6,7)

d=/(8—-8)2+(9-10)2=1

Since 1 < 2v/2, we get current_best = (8,10)
which is a leaf. This is our first candidate.

2) § =6 > 1 = current_best.dist, so we do not explore the left subtree from the second level.

1) § =2 > 1 = current_best.dist, so we do not explore the left subtree fror%lthe first level.
& S

DA



Verification criterion: a Bayesian decision problem

Bayes Factor
Given a reference list and a test list of stars, which are our data D, the Bayes Factor is
D|F
K = PPIF)
p(D|B)
number (1079), and the utility table:

We have to consider the prior p(F')/p(B), which is typically set to a very small

Decision

Reality
Accept

True alignment

u(TP) =+1
Reject

False alignment

u(FN) = -1

utility E[u] for each decision.

uw(FP) = —1999

u(TN) =+1
The decision to accept or reject the alignment is taken by computing the expected



Verification criterion: a Bayesian decision problem

e E[u| Accept ,D|=u(TP)-p(TP|D)+ u(FP)-p(FP|D)
=uw(TP) - p(F|D) + u(FP) - p(B|D)
e E[u|Reject ,D]=u(FN): -p(FN|D)+ u(TN)- -p(TN|D)
=u(FN) - p(F|D) +w(TN) - p(B|D)
The alignment is accepted if

E[u | Accept ,D | > E[u | Reject , D]

<  uw(TP) p(F|D)+u(FP) p(B|D) > u(F'N) p(F|D)+u(TN) - p(B|D)
= p(F|D) - [w(TP) — u(FN)] > p(B|D) - [u(TN) — u(FP)]
p(F|D) _ u(TN)—u(FP)
= p(BID) ~ w(TP) — u(FN)
p(D|F) p(F) _ u(TN) —u(FP) ,
<~ p(D|B) '@ m by Bayes Theorem
=K
p(B) ) u(TN) — u(FP)
= p(F)  u(TP) — u(FN)
— K> 1 ) 1—(—1999) - 10°

106 1—(=1)

[} = =

DA



PRISMA: candidate match hypothesis
A: (z1,y1) «— (a1,z1
B: (wg,yg) <—> ((127 )
C: (r3,y3) <+—
D:

)
)
(a3, 23)
(ra,y4) +— (a4,24)
e Estimate of the linear plate scale V: the mean of
V==
only if

— S(ePri — 1)
V-

ri

a5 /x <V <V 4 &5
e Estimate of ag: the mean of

vie{1,2,3,4}

o/px Vi=1,2,3,4
only if

aOZ_zz—arctan(yi_yc) Vie{l,2,3,4}
T; — xC

ap —5° < ag; <ag+5° Vi=1,2 34|
for the computation of K

b b
The estimate of ag is then used to convert catalog coordinates in pixels

DA



PRISMA: analysis aimed at finding a suitable threshold for K

2;2:302: notable doubtful solutions (K values) thr:ssltrlqdaii(: K
0 -79.2 10
100 -167.7 10
200 -203.7,-139.7,-51.1,-19.5,68.0 10
300 -170.4,-21.5,-113.7,-10.5 10
400 -25.0,-24.5 10
500 -95.3,-2.9 10

Table: Summary of the results for the estimation of a threshold for K, in the setting with a fixed
number of 1200 catalog stars and different fractions of distractors.

u}
8
l
n
it

DA



Results for images acquired by ITTO09 and ITLO06 cameras
number number mean mean mean mean
image conditions det::ted solu(gons nur;]fber m;?" ag v time
sources [/100] attempts [855°] | [0.126°/pd | [ "]
ITTO09 cloudless sky, 1
2024-11-03 Moon below 1238 83 130 35.89 355.19 0.128 16"
00:01:40 the horizon
number number mean
image conditions of of number mean mae(?n m?/?" Ti?na:
detected solutions of K
sources [/100] attempts [836.3°1 | [0.166°/p] | [ "]
cloudless sky,
ITLO06 Moon 50°
2023-04-26 above the 352 15 14 30.11 336.98 0.167 6"
20:04:23 horizon at
40% phase
ITLOO6 cloudless sky,
2023-04-27 Moon below 380 100 11 48.29 336.38 0.167 9"
00:09:20 the horizon
[} = =

DA



Results for images acquired by ITER10 camera

number number mean
mean mean mean
image conditions d of d | of numfber mIe?n ag 4 time
etecte solutions o o o )
sources [/100] attempts [8.5°] [0.126%/p | [ 7]
ITER10 a few clouds,
2024-06-26 Moon below 459 100 20 106.02 8.61 0.127 19"
21:04:22 the horizon
majority of the
ITER10 sky covered by
2024-06-26 clouds, Moon 137 - - -
21:24:22 below the
horizon
some clouds
i |
ITER10 covering nearly
20240626 | 0% of the 275 85 17 0.85 8.81 0.128 6
. field of view,
21:44:22
Moon below
the horizon
ITER10 cloudless sky,
2024-06-26 Moon below 1285 100 48 90.22 8.70 0.127 1/ 5"
22:44:22 the horizon
cloudless sky,
ITER10 Moon 30°
2024-06-27 above the 951 99 49 114.55 8.70 0.127 1/
01:54:23 horizon at
70% phase
= = = = (64




PRISMA: possible improvements

e The current algorithm is not suitable for images with high cloud coverage.

e Enhancements to the data structure of the KD-tree and to the performance of
the NNS algorithm could reduce computational costs and increase robustness.

o Estimation of parameters: our implementation of the algorithm is not blind,
because we used estimates for some parameters due to the distortion of all-sky
cameras. PRISMA can already estimate the distortion parameters (V, S, D), but
an automatic procedure to determine the image center C' without prior
knowledge still has to be developed.

u}
8
l
n
it

DA



PRISMA: issues in the simplified formula used for the Bayes Factor

o Reference stars and test stars are treated asymmetrically.
o The choice of a uniform background distribution is not optimal.

e The number of reference and test stars affects the behavior and performance of
the model:

- If the reference list contains only a few stars, each correctly matched test
star produces a large increase in the Bayes Factor.

- When the reference list contains many stars, correctly matched test stars
lead to a slower increase in the Bayes Factor.

- If the test list contains stars that are absent from the reference list, as more
such stars are included, the Bayes Factor decreases steadily.

e “Lucky donut” effect: it is possible for several test stars to be associated to the
same reference star, or the other way around.

u}
8
l
n
it

DA



	References

