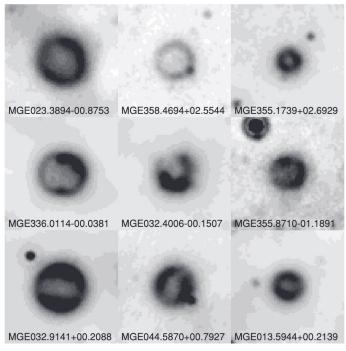
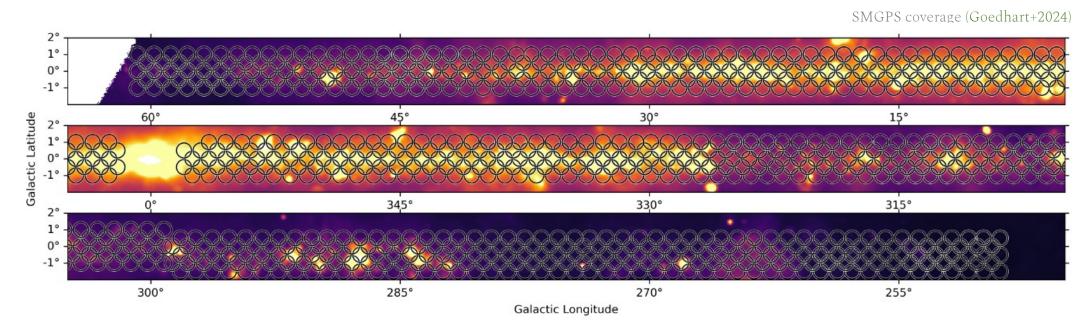
One telescope to find them all: A MEERKAT HUNT FOR RADIO RINGS

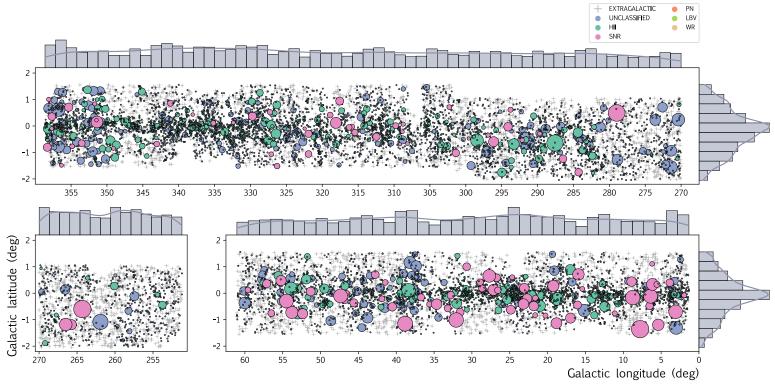
C. Bordiu & the Catania Radio Group INAF - Osservatorio Astrofisico di Catania


The Fifth National Workshop on the SKA project

Bologna · 24-28 November 2025

A search for radio rings


- Radio ring-like sources tracers of stellar evolution (from HII regions to SNRs)
- "Compact" rings typically associated with evolved star mass-loss (shells)
- A "blind search" for rings: good strategy in the infrared! (MIPSGAL, ~400 "bubbles", Mizuno+2010)
- Can we do the same at radio wavelengths? So far...
 - Limited angular resolution
 - Limited sensitivity
 - Limited coverage


Example IR rings from Mizuno+2010

The MeerKAT revolution

- New interferometers allow for high-resolution, deep, large area surveys
- Searching for compact rings(<1 arcmin) "at scale" is now possible
- Over 17000 extended structures identified in the SMGPS (Bordiu+2025a) huge potential

Extended sources in the SMGPS

Sky distribution of extended radio sources in the SMGPS (Bordiu+2025a)

~17000

catalogued sources

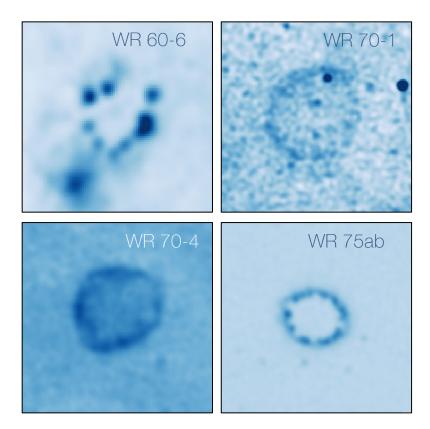
~24%

Galactic objects

~33%

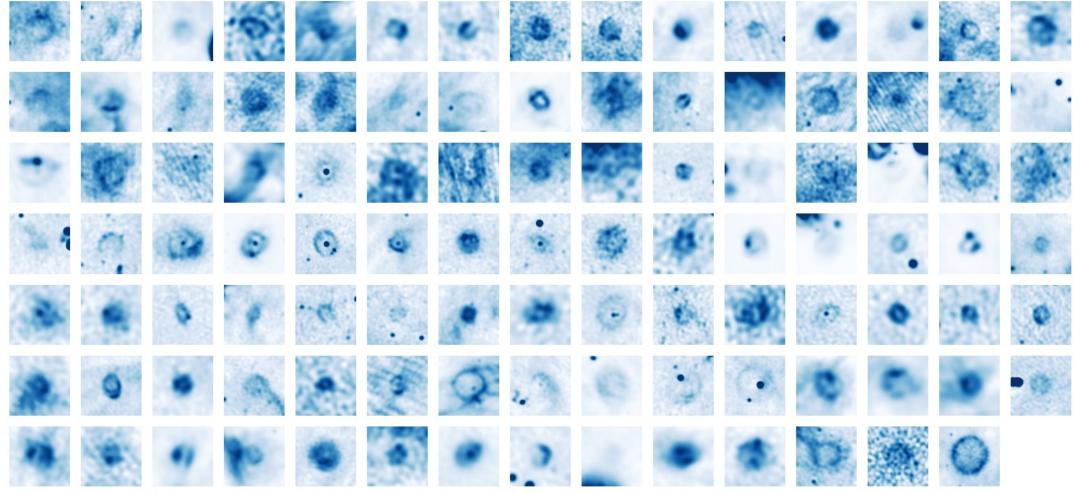
Extragalactic candidates

~43%


Unclassified sources

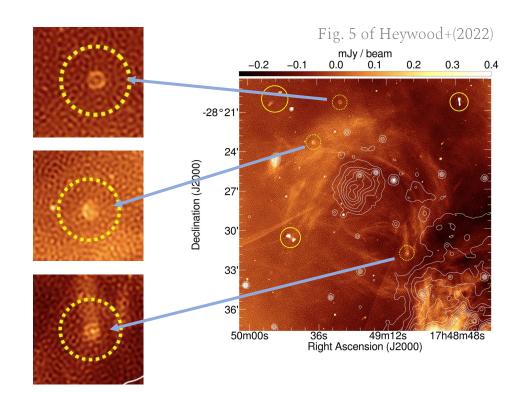
What did we find? (I)

Dozens of ring-like structures associated with known evolved massive stars


Ring nebulae around LBV and LBV candidates (Umana+, in prep.)

Circumstellar shells around WR stars (Buemi+, in prep.)

What did we find? (II)

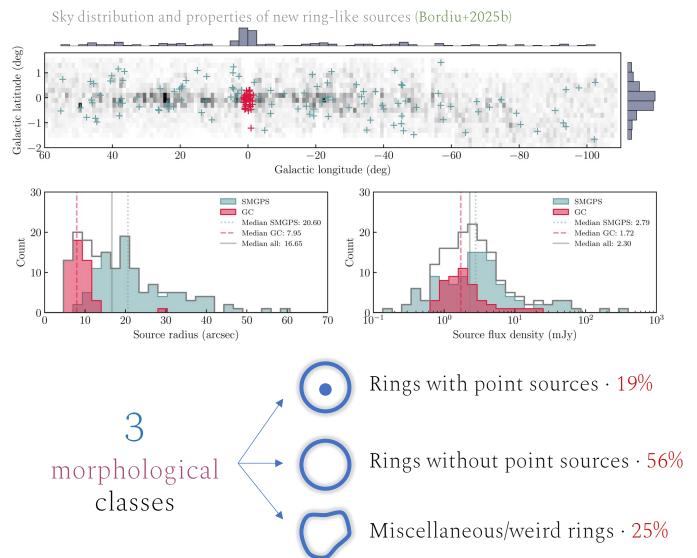

But also numerous new ring & shell-like sources of uncertain origin!

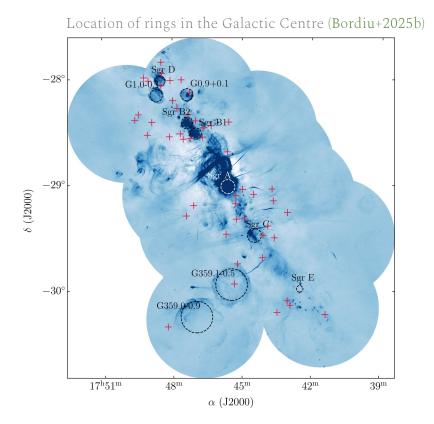
Unclassified rings in the SMGPS (Bordiu+2025)

Systematic search for rings combining the SMGPS and the Galactic Centre Mosaic*

(*where Heywood+2022 had noted the presence of several small diameter "shells")

Building the sample


Selection criteria:


- "UNCLASSIFIED"
 Not matching known Galactic extended sources
- ROUNDISH
 Not strong deviations from spherical symmetry
- 3 LIMB-BRIGHTENED (i.e. with bright edges)
- 4 ANGULAR RADIUS <1 arcmin
- 5 FAR FROM confused regions and imaging artifacts

164

Unclassified rings in the final sample

Population overview

The over-density in the GC is statistically significant (not a selection bias despite the resolution difference)

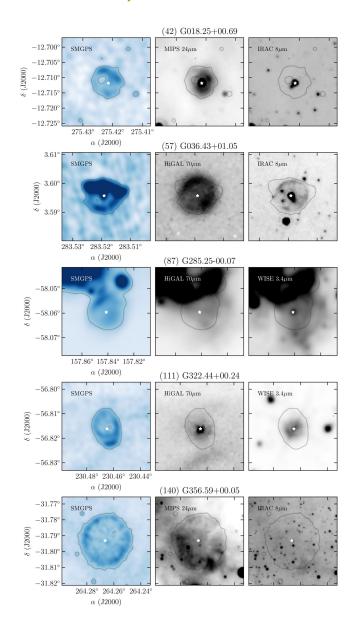
Cross-match and identification

Excerpt from the ring catalogue

	1												
ID	GName	Radius	PS	$S_{ m ring}$	S_{PS}	Type	Point source Extended emission		SIMBAD	Classification			
		(arcsec)		(mJy)	(mJy)		2MASS	GLIMPSE	8 μm	24 μm	70 μm		
1	G000.21+00.12	13.1	N	2.94 (0.3)	_	2a	×	~	×	✓	×		
2	G000.44+00.28	12.1	Y	1.32 (0.12)	0.07 (0.02)	1a	✓	~	×	✓	×		
3	G000.45-00.00	5.7	N	9.26 (0.54)	_	2b	✓	~	×	✓	×	[FPF2021] 44 5 1 (Star)	PN/Massive star
4	G000.50+00.12	7.7	N	1.85 (0.16)	_	3c	~	~	×	?	×		
5	G000.50-00.11	7.2	N	2.71 (0.2)	_	2b	×	~	×	?	×		PN
6	G000.52+00.04	7.6	N	1.9 (0.21)	_	2c	~	~	×	×	×		PN
7	G000.53-00.17	11.5	Y	4.04 (0.32)	0.4 (0.08)	1b	~	~	×	✓	✓	ISOGAL-P J174733.0-283411 (YSOc)	HII region
8	G000.58-00.16	7.7	N	6.76 (0.38)	_	2b	~	~	×	✓	✓	SSTGC 830399 (YSOc)	H _{II} region
9	G000.61-00.26	10.3	Y	0.65(0.1)	0.15 (0.03)	1a	✓	~	×	×	✓		
10	G000.61+00.01	5.1	N	1.26 (0.11)	_	2c	✓	✓	×	✓	×		PN
11	G000.70-00.01	10.9	N	1.95 (0.21)	_	3c	~	~	×	×	×		
12	G000.74-00.43	9.7	Y	0.98 (0.13)	0.22 (0.02)	1a	✓	~	×	✓	?		Massive star
13	G000.81-00.06	6.7	N	1.17 (0.11)	_	2b	~	~	×	×	?		PN

Positional crossmatch (5")

SIMBAD · 2MASS · GLIMPSE (17%) (41%) (26%) Search for IR counterparts


 $8um \cdot 24um \cdot 70um$ 50% in at least one band

Proposed scenarios

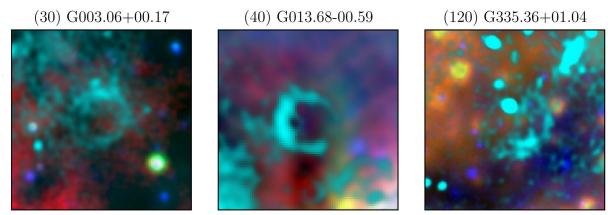
PNe · Massive stars ·HII regions Galaxies · ORCs · SNRs Nova shells · Galaxy cluster lenses

(but 40% remain unclassified)

And now, some highlights...

Candidate LBV stars?

22 rings in the sample show:


- 1. Clear IR counterpart at 8 or 24 um
- 2. Central star visible in the optical/IR (not necessarily in radio)
- 3. The star is a confirmed variable star

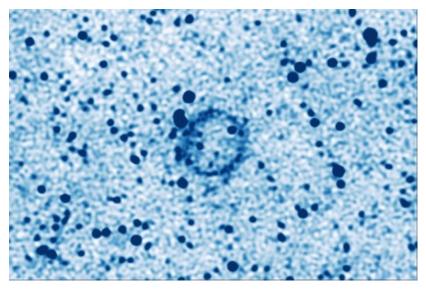
Five of them are Long Period Variable stars (Gaia DR3)

These rings could be circumstellar shells around unidentified <u>LBV candidates</u>

(MeerKAT S-band follow up ongoing to constrain spectral index)

Low-latitude ORC candidates?

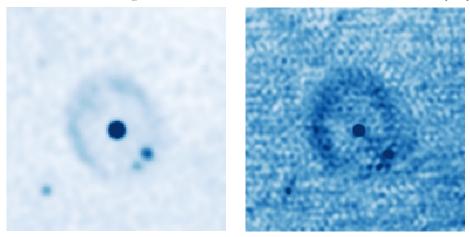
Rings without multiwavelength counterparts (R=8um, G=24um, B=70um, Cyan=L-band)

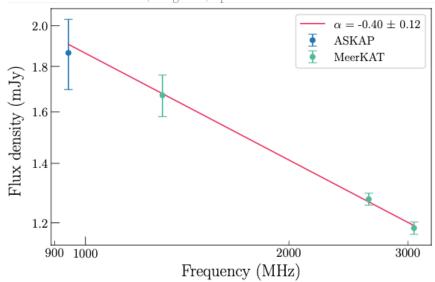

Several rings in the sample are only visible in the radio

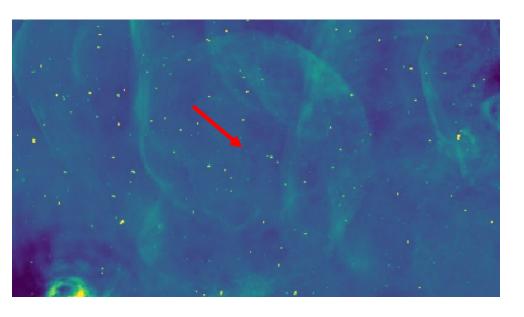
- Too small to be an old SNR (even at ~20 kpc)
- Too faint to be a young SNR
- May be low-latitude ORCs?

They resemble the *Kyklos* radio ring (Bordiu+2024)

Odd Radio Circles


Circular radio structures with no obvious counterpart at other wavelengths, α <-0.4, hosting a galaxy in the centre, and typically located at high Galactic latitudes


MeerKAT L-band image of Kyklos /J1802-3353 (Bordiu+2024)


Puzzling sources?

G266.18-01.15 (Ring #81) as seen in L-band and S-band (Bufano+ in prep.)

G266.18-01.15 (Ring #81) spectral index fit

G266.18-01.15 is a source in the Vela region that defies classification (Bufano+ in prep.)

The central object has a non-thermal spectral index, is visible in the IR and soft X-rays. The shell is only visible in the radio

Summary

- 1. MeerKAT is revealing an increasing number of ring-like structures across the Galaxy
- 2. Many of these may be tracing hidden populations of evolved stars (census completion)
- 3. Exotic explanations are possible for some of the rings

4. Multi-frequency observations are key for reliable spectral analysis (WIP)

Thanks for your attention!