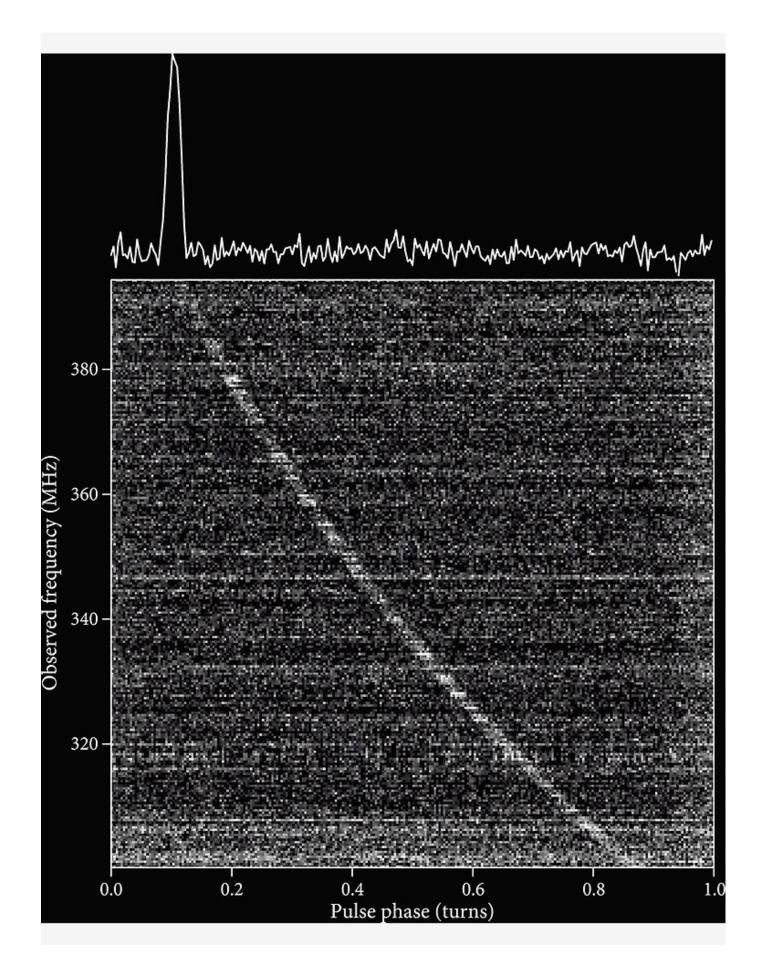
Connecting Fast Radio Bursts to their progenitors:

demographic surveys and associated persisting radio sources with SKA

Davide Pelliciari

IRA-INAF


in collaboration with: G. Bernardi (IRA-INAF), M. Pilia (OAC-INAF), L. Bruno (IRA-INAF), L. Beduzzi (IRA-INAF), P. Esposito (IUSS), A. Geminardi (OAC-INAF), G. Naldi (IRA-INAF), G. Bianchi (IRA-INAF)

Fast Radio Bursts (FRBs) in a (very tiny) nutshell

 Highly dispersed (-> exgtragalactic!) radio bursts of millisecond duration

- ~800 different sources of FRBs are known
 - majority are *one-off* sources
 - ~60 repeaters (no rotational periodicity found yet)
 - A handful of them show hyperactivity (up to 500 bursts/h)

 Most invoked progenitors are magnetars, i.e. neutron stars powered by the decay of large internal B fields (up to 10¹⁶ G, see e.g. Kaspi+17, Esposito+18, Rea & De Grandis+25 for reviews)

FRB progenitor(s)?

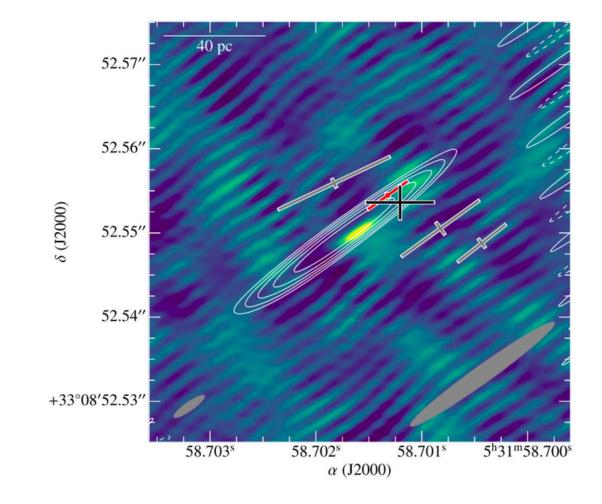
magnetars

Magnetars could be involved.

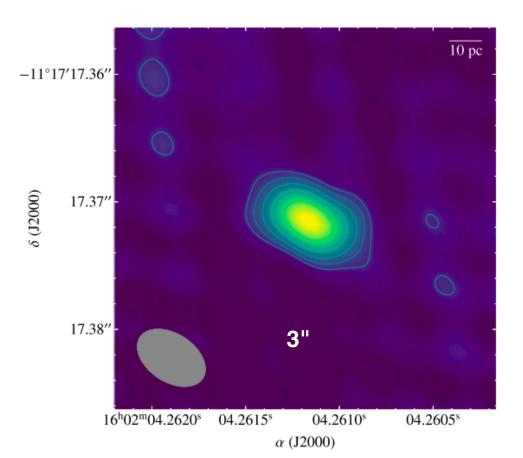
Main indications:

- theoretically supported (e.g. Popov & Postnov 07)
- Some FRBs are localized in **SF regions** (e.g. Tendulkar+17, Marcote+20)
- short FRB duration --> compact sources
- high-RM FRBs --> complex magnetised environment around them (e.g. Michilli+18)
- A Galactic magnetar (SGR 1935+2154) emitted multiple FRB-like signals (CHIME/FRB 20, Bochenek+20, Mereghetti+20, Tavani+20)

Limitations:


- Repeating FRBs can be very active! (while SGR 1935 is not..) (but see Margalit+20, Pelliciari+23, Geminardi,..,DP+25)
- Some **very active** repeaters (e.g. R1) are active since at least 13 yrs (and Galactic magnetars seem not.. see, e.g., Geminardi,..,DP+25)
- A nearby FRB pinpointed to a **globular cluster**.. CCSN magnetar hypothesis is **almost ruled out** for this specific source (Kirsten+22)
- Repeating FRBs could be also produced in **binary BHs** (e.g. Sridhar+24)

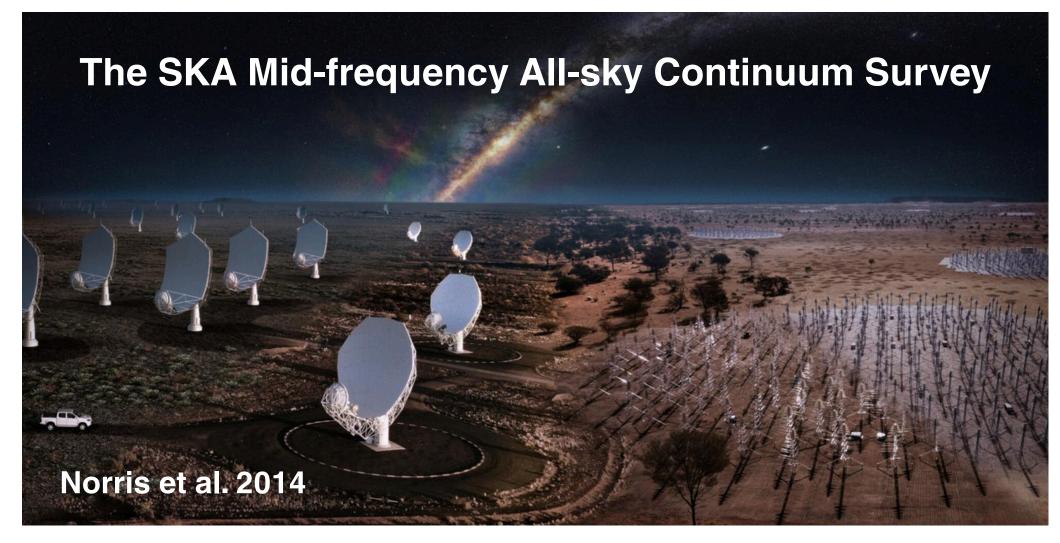
PRSs: an important link to FRB progenitors


FRB 20121102A (Marcote *et al.* 2017)

• Four active FRBs present *co-spatial* persistent radio sources (PRSs), too bright and compact (at pc scales) to be explained as star-formation processes.

see G. Bruni's talk!

Concordance picture for PRSs: a strongly magnetized wind nebula powered by a central active magnetar (Margalit & Metzger 2018) or a compact binary system (e.g. BH-BH) accreting at Super-Eddington rate (e.g. Shridar et al. 2024)

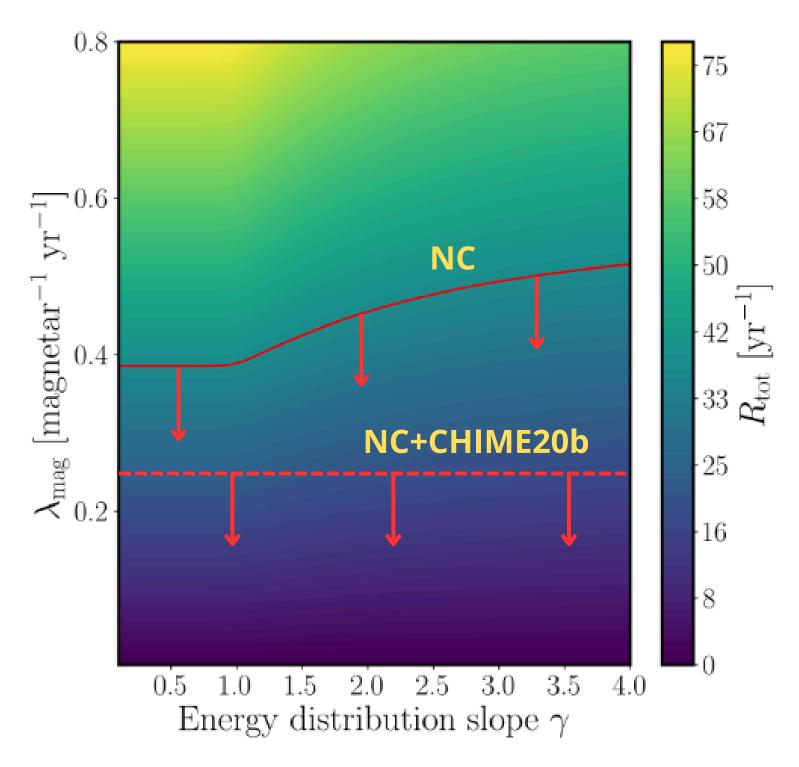

FRB 20190520B (Bhandari *et al.* 2023) How to investigate FRB progenitors?

How to investigate FRB progenitors?

with observations commensal with all-sky surveys, e.g.

Idea #1: Search FRBs in SF galaxies

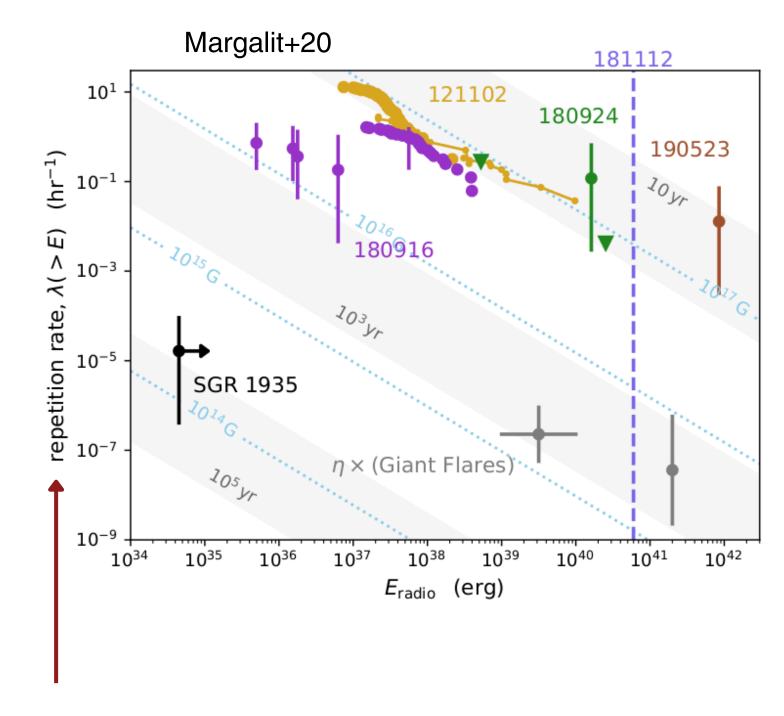
- Nearby galaxies are suitable to search for FRBs similar to the one emitted by the Galactic magnetar
- Magnetars are young objects, so one expect to find more of them the more the SFR of the galaxy is
- Northern Cross: Long monitoring (tot: 700 hrs) on 7 SF galaxies. We got 0 detections → limit on the FRB rate per magnetar λ_{mag}! (Pelliciari+23b)
- We derived the total FRB rate expected from the sample of 7 galaxies and compare it to our non-detection in 700 hrs (see Figure)



Driver: investigate magnetar FRB rate

Pelliciari+23b

- Nearby galaxies are suitable to search for FRBs similar to the one emitted by the Galactic magnetar
- Magnetars are young objects, so one expect to find more of them the more the SFR of the galaxy is
- Northern Cross: Long monitoring (tot: 700 hrs) on 7 SF galaxies. We got 0 detections → limit on the FRB rate per magnetar λ_{mag}! (Pelliciari+23b)
- We derived the total FRB rate expected from the sample of 7 galaxies and compare it to our non-detection in 700 hrs (see Figure)

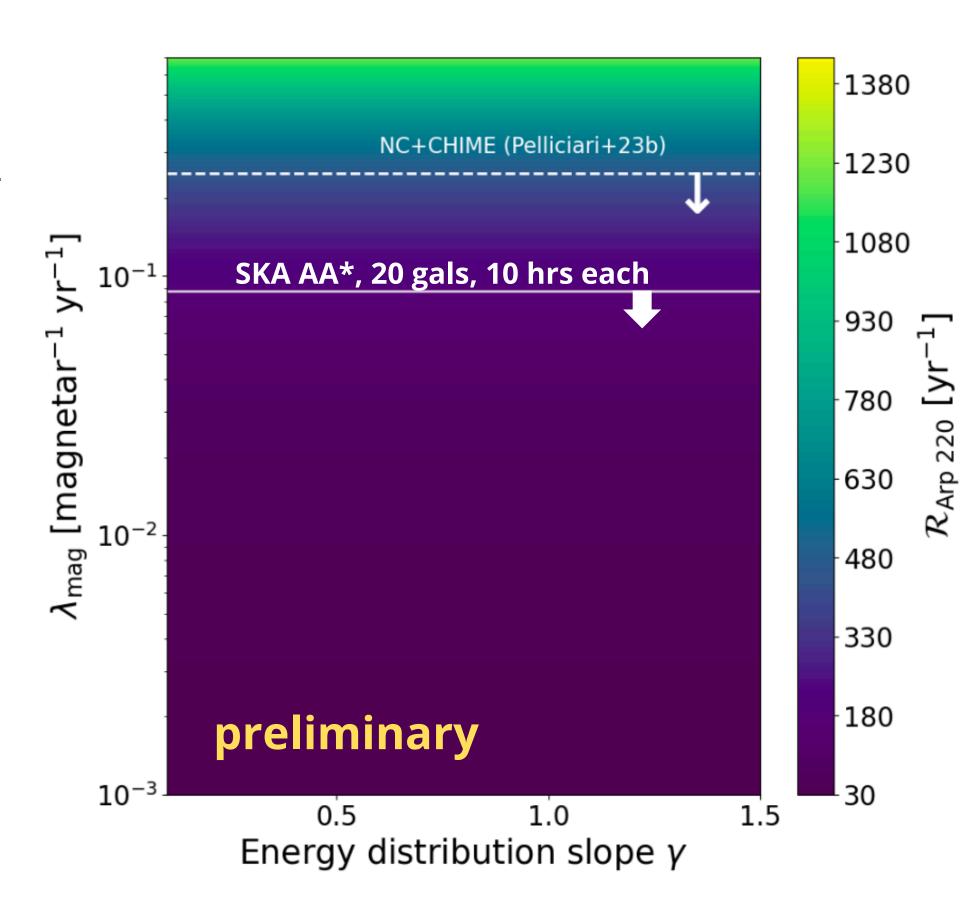

 $0.007 < \lambda_{\rm mag} < 0.45 \text{ magnetar yr}^{-1}$

Are FRBs originating from exotic magnetars?

We are not observing magnetars as active as R1 in our own Galaxy (see also Geminardi+25)

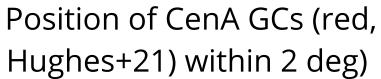
One can (broadly) solve this issue by adding a **new class** of *exotic* magnetars with **stronger B fields, more active** and **born** at a much **lower birthrate than SGRs** (see Margalit+20)

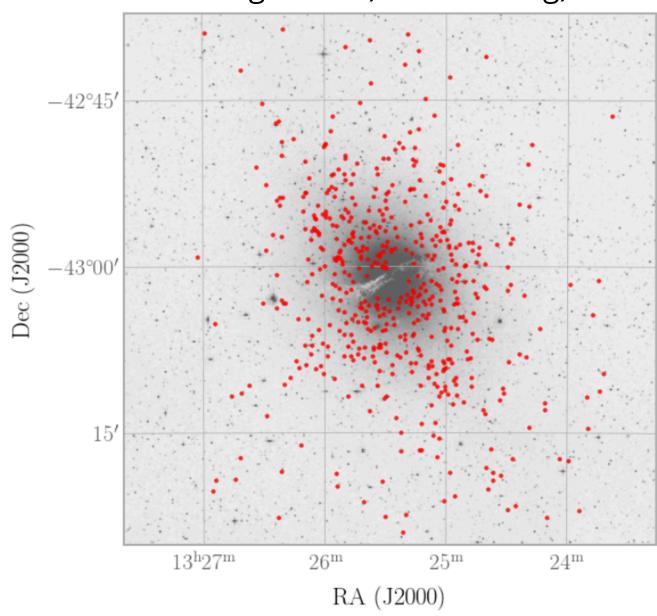
These observations can shed light on FRB progenitor(s) and *exotic* magnetar formation channels


repetition rate per source

How SKA (AA*) can improve

SKA-MID sensitivity (10σ = 3.5 mJy ms) is a factor 10000 better than what consider in Pelliciari+23b (NC, 8 cylinders) → The maximum distance at which a SGR1935-like FRB would be detectable is a factor 100 larger

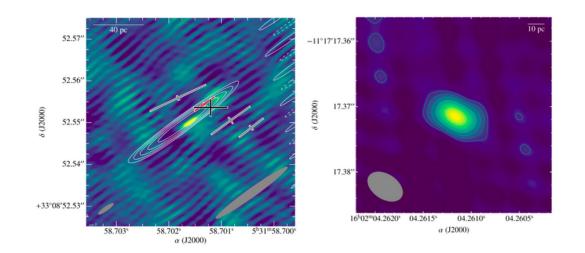

 SKA beamforming capabilities will assess an FRB localization at arcsec level → in case of detection one can also study the local origin of the FRB

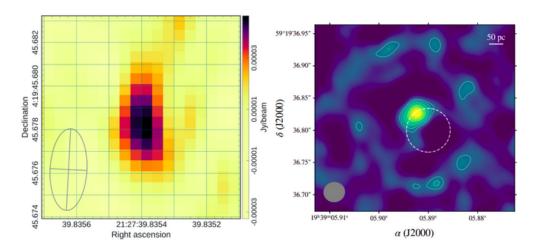


Not only nearby SF galaxies!

 Demographic searches for other types of galaxies,
 e.g. massive and/or dwarf galaxies (regardless of the SFR). Useful also for indirect PRS searches!

Target a single nearby galaxy (or some of them)
having a large number of globular clusters,
leaveraging the beamforming capabilities of SKA
(e.g. Centaurus A with hundreads of catalogued
GCs within the SKA FoV)

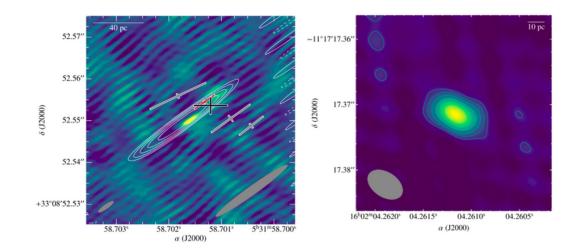


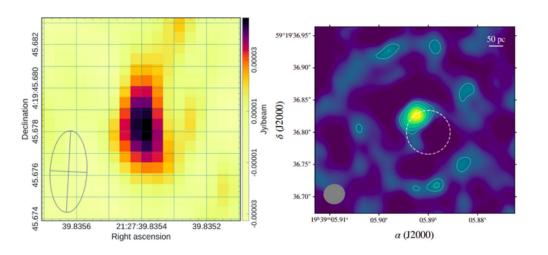


Idea #2: Discovering new PRSs!

Just a handful of PRSs are known!

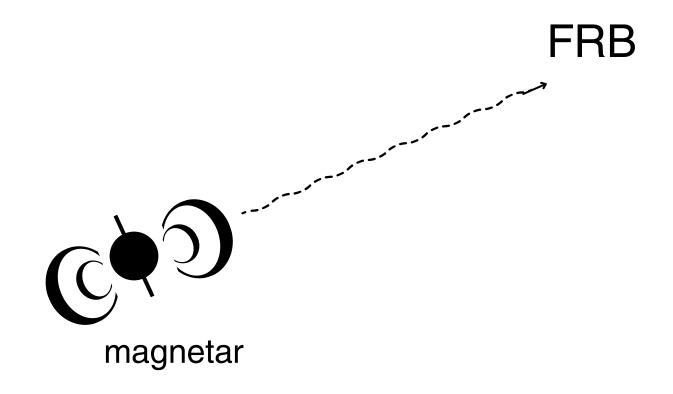
- 4 confirmed sources: FRBs 20121102 (Chatterjee+17, Marcote+17), 20190520B (Niu+21,Bhandari+23), 20190417A (Ibik+24, Moroianu+25), 20240114A (Bruni+25)
- 2 candidates: FRBs 20181030A (lbik+24b), 20201124A (Bruni+23)

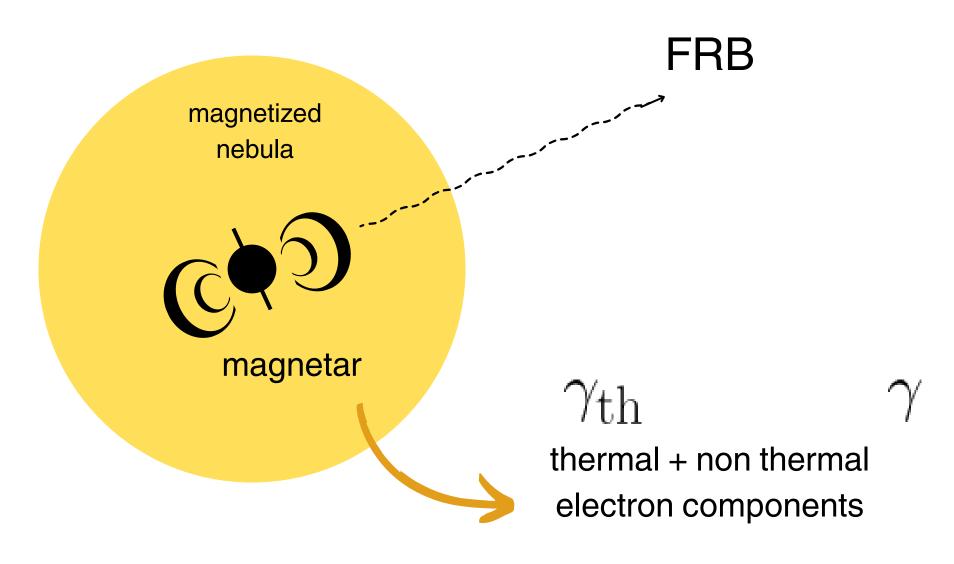



Property	$\mathbf{FRB} 20190417 \mathbf{A}^a$	FRB 20121102A b	FRB 20190520B c	FRB 20240114A e	
${ m DM_{host,rest}(pccm^{-3})}$	$I_{\text{host,rest}} \left(\text{pc cm}^{-3} \right) > 1212$		137 - 707	142 ± 107	
$RM_{rest} (rad m^{-2})$	5,038-6,441	$4.4 \times 10^4 1.5 \times 10^5$	$[-3.6, +2.0] \times 10^4$	449 ± 13	
z	0.128	0.193	0.241	0.130	
$L_{\nu} \; ({\rm erg s^{-1} Hz^{-1}})$	$\sim 8 \times 10^{28}$	$\sim 2 \times 10^{29}$	$\sim 3 \times 10^{29}$	$\sim 2 \times 10^{28}$	
ν of above	$(1.5\mathrm{GHz})$	$(1.4 \mathrm{GHz})$	$(1.7 \mathrm{GHz})$	(5 GHz)	
Spectral index, α	pectral index, α -1.20 ± 0.40		-0.15 ± 0.08 -0.41 ± 0.04		
Physical size (pc)	Physical size (pc) < 23		< 9	< 0.4	
PRS-burst offset (pc)	PRS-burst offset (pc) < 26		< 80	~ 28	
Host galaxy Dwarf		Dwarf Dwarf		Dwarf	

Idea #2: Discovering new PRSs!

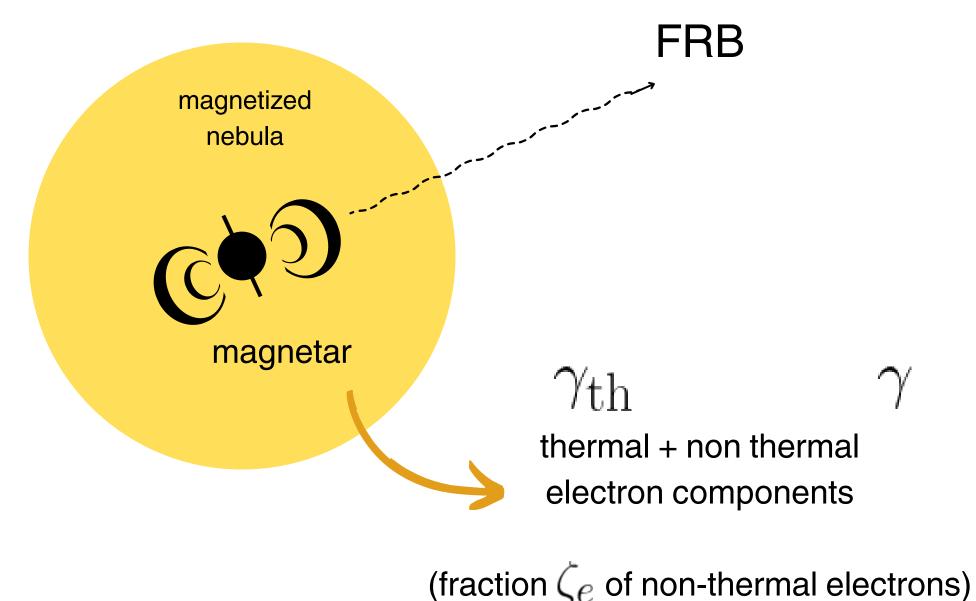
Just a handful of PRSs are known!


- 4 confirmed sources: FRBs 20121102 (Chatterjee+17, Marcote+17), 20190520B (Niu+21,Bhandari+23), 20190417A (Ibik+24, Moroianu+25), 20240114A (Bruni+25)
- 2 candidates: FRBs 20181030A (lbik+24b), 20201124A (Bruni+23)

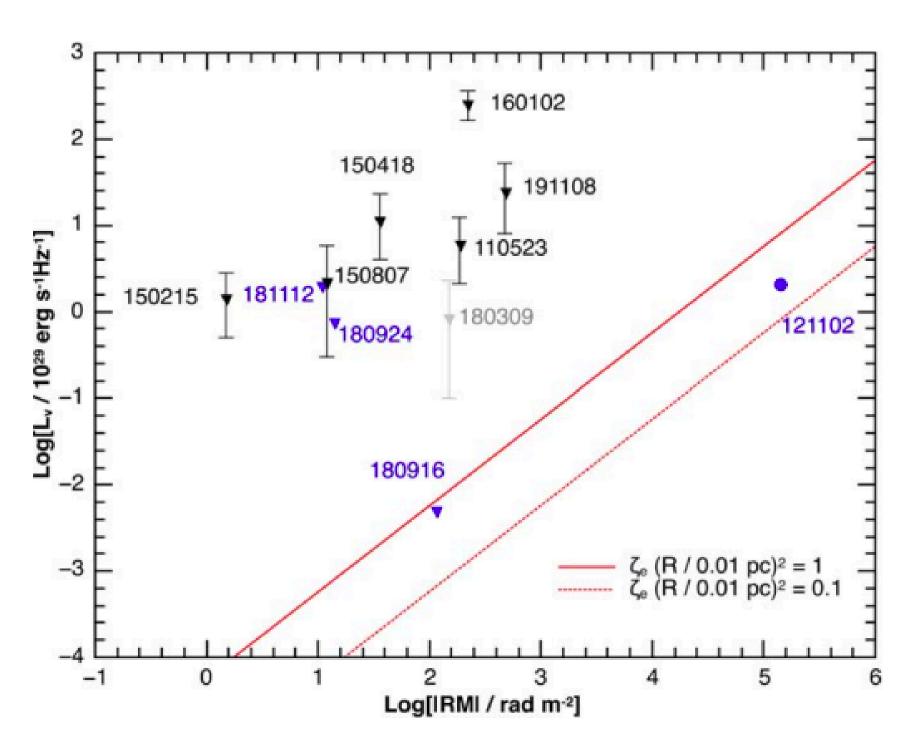


Property	$\mathbf{FRB} 20190417 \mathbf{A}^a$	FRB 20121102A b	FRB 20190520B c	FRB 20240114A e	
${ m DM_{host,rest}(pccm^{-3})}$	> 1212	$\lesssim 203$	137-707	142 ± 107	
$RM_{rest} (rad m^{-2})$	5,038-6,441	$4.4 \times 10^4 - 1.5 \times 10^5$	$[-3.6, +2.0] \times 10^4$	449 ± 13	
z	0.128	0.193	0.241	0.130	
$L_{\nu} \; ({\rm erg s^{-1} Hz^{-1}})$	$\sim 8 \times 10^{28}$	$\sim 2 \times 10^{29}$	$\sim 3 \times 10^{29}$	$\sim 2 \times 10^{28}$	
ν of above	$(1.5\mathrm{GHz})$	(1.4 GHz)	$(1.7 \mathrm{GHz})$	(5 GHz)	
Spectral index, α	-1.20 ± 0.40	-0.15 ± 0.08	-0.41 ± 0.04	-0.34 ± 0.21	
Physical size (pc)	< 23	≤ 0.7	< 9	< 0.4	
PRS-burst offset (pc)	< 26	< 40	< 80	~ 28	
Host galaxy	Dwarf	Dwarf	Dwarf	Dwarf	

A schematic picture behind FRB-PRS systems


A schematic picture behind FRB-PRS systems

(fraction ζ_e of non-thermal electrons)


A schematic picture behind FRB-PRS systems

If the emitting region (PRS) **is the same** where RM originates, then a positive correlation between the RM and specific PRS luminosity is expected (Yang+20, Yang+22, Bruni+24)

$$L_{\nu} \approx 5.7 \times 10^{29} \text{ erg s}^{-1} \text{ Hz}^{-1} \left(\frac{\zeta_e \gamma_{\text{th}}^2}{0.01}\right) \left(\frac{R}{1 \text{ pc}}\right)^2 \left(\frac{|\text{RM}_{\text{src}}|}{10^3 \text{ rad m}^{-2}}\right).$$

The RM-Lnu relation (at the beginning)

From Yang+20

A 1.26 GHz search for PRSs with the uGMRT

Pelliciari et al. (in prep.)

24 FRB sources13 rep.11 one-offs

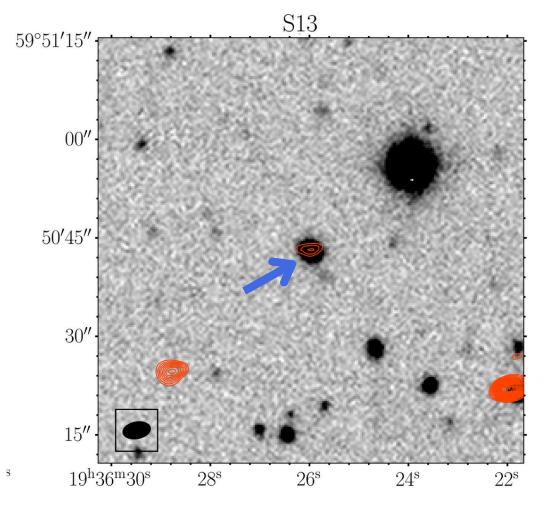
uGMRT

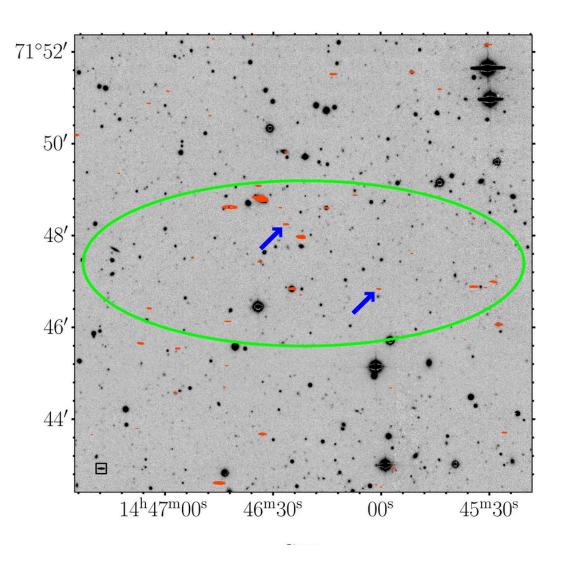
	Course nome		DM	E	1	Dafa
ID	Source name	Z	RM_{obs}	$F_{1,2}$	$L_{1,2}$	Refs.
	201002011	0.000441	(rad m ⁻²)	(μ J y)	(10 ²⁹ erg s ⁻¹ Hz ⁻¹)	
S 1	r20180301A	0.3304(1)	-68(13)	< 36	< 1.12	1, 2, this work
S2	r20180814A	0.06835(1)	+700(1)	< 36	$< 4.2 \times 10^{-2}$	3, 4, this work
S3	r20190303A	0.06437(1)	$-703.4(6)^{a}$	< 114	< 0.12	3, 4, this work
S 4	20190523A	0.660(2)	-	< 39	< 5.4	5, this work
S5	r20190417A	0.12817(2)	+4429.8(4)	248(20)	1.05(8)	3, 4, 6, this work
S 6	20190714A	0.2365	-	< 39	< 0.6	7, this work
S 7	r20190804E	$0.30^{+0.06}_{-0.18}$	-196.0(2)	< 60	< 1.7	8, 9, this work
S 8	r20191106C	0.10775(1)	+1044.4(2)	< 126	< 0.37	8, 9, 10, this work
S 9	20191228A	0.2432(1)	_	< 45	< 0.73	1, this work
S10	20200216A	$0.46^{+0.08}_{-0.28}$	+2051(6)	< 39	< 2.7	11, this work
S11	r20201114A	$0.46^{+0.08}_{-0.28} \ 0.26^{+0.04}_{-0.16}$	+1348.7(3)	< 60	< 1.2	8, 10, this work
S12	r20201130A	0.16 ^{+0.04}	+182.9(2)	< 54	< 0.42	8, 10, this work
S13	20210317A	$0.38^{+0.08}_{-0.24}$	+252(1)	116(14)	$0.68(8)^{b}$	11, this work
S14	20210320C	0.2797	_	< 54	< 1.2	12, 13, this work
S15	20210807D	0.1292	_	< 54	< 0.23	14, this work
S16	20210117A	0.2145	+43(6)	< 45	< 0.56	1, 14, this work
S17	20211127I	0.0469	_	< 39	$< 2.1 \times 10^{-2}$	14, this work
S18	20211212A	0.0715	_	< 90	< 0.11	15, this work
S19	20220105A	0.2785	_	< 66	< 1.4	12, 13, this work
S20	r20230607A	0.22	-12249(2)	< 45	< 0.58	15, this work
S21	r20230814A	$0.64^{+0.10}_{-0.36}$	-19(1)	< 63	< 8.5	16, this work
S22	r20240114A	0.1300(2)	+338.1(1)	53(11)	0.31(4)	17, 18, this work
S23	r20240316A	$0.28^{+0.04}_{-0.18}$	_	< 48	< 1.1	19, this work
S24	r20240619D	$0.28_{-0.18}^{+0.06}$ $0.34_{-0.22}^{+0.06}$	-190(1)	< 54	< 1.9	20, this work

A 1.26 GHz search for PRSs with the uGMRT

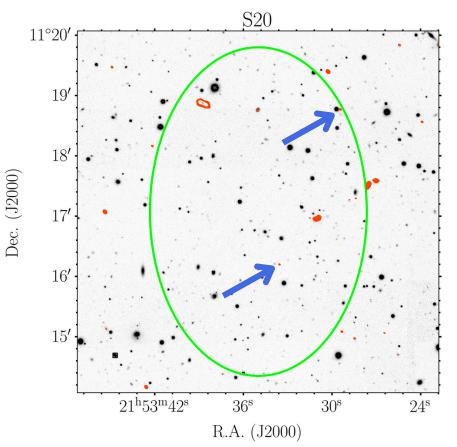
+ 41 sources from literature

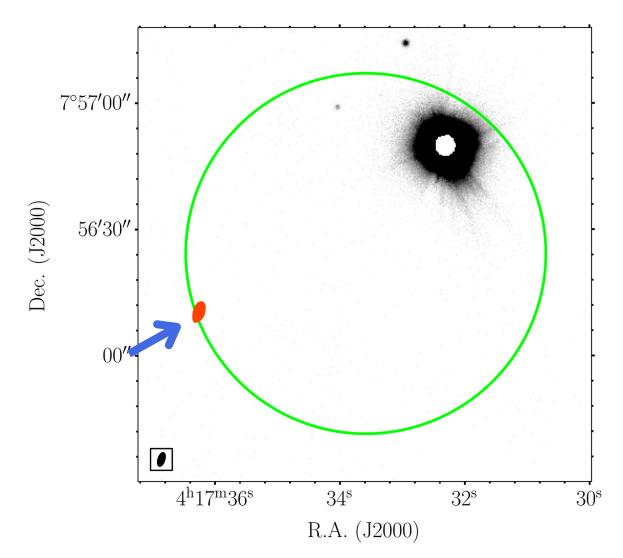
= 65 FRBs

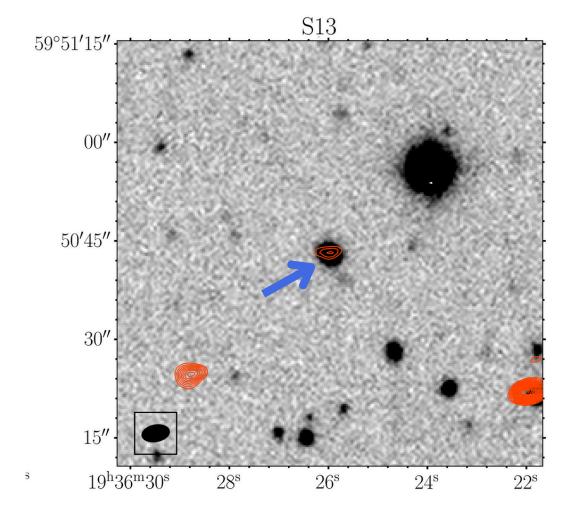

25 rep. 40 one-offs

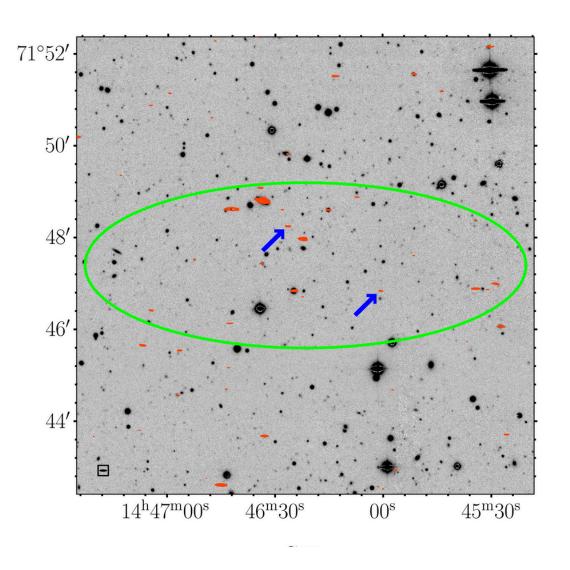

Pelliciari et al. (in prep.)

_	20110523A	0.6(2)	-186.1(1.4)	< 36	< 7.3	21,22
R1	r20121102A	0.19273(8)	$(+6.7 \times 10^4 - 10^5)^a$	194(19)	1.9(2)	23 - 25
_	20150215A	0.7(2)	+2(11)	< 11.5	< 3.1	26
-	20150418A	0.6(2)	+36(52)	< 73	< 15	27
_	20150807A	0.2(1)	+12.0(7)	< 362	< 7.9	28
_	20160102A	$3.06^{+0.48}_{-1.35}$ $0.44^{+0.08}$	-221(6)	< 46	< 148	29,30
-	r20171019A	$0.44^{+0.08}_{-0.26}$	-	< 15.6	< 0.98	31
_	20171020A	0.0087(5)	_	< 142	$< 2.5 \times 10^{-3}$	32,33
-	20180309A	0.2(1)	< 150	< 122	< 2.3	22, 35
R3	r20180916B	0.0337(2)	$-114.6(6)^{a}$	< 19	$< 5.3 \times 10^{-3}$	36, 37
_	20180924B	0.3214(2)	+14(1)	< 32	< 0.9	38
_	r20181030A	0.00385(2)	+36.6(2)	417(21)	$1.47(7) \times 10^{-3}$	5,39
_	20181112A	0.4755(2)	+10.9(9)	< 33	< 2.3	7, 40, 41
_	r20190102C	0.2913(2)	+110	< 30	< 2.3	7,41
_	r20190117A	$0.34^{+0.06}_{-0.22}$	+76.3(4)	< 49	< 1.7	3,39
_	r20190208A	$0.54_{-0.22}^{+0.1}$ $0.54_{-0.3}^{+0.1}$	$+36.3(7)^{a}$	< 16	< 2.3	3, 4, 39
R1-twin	r20190520B	0.241(1)	-2×10^{5} a	218(9)	3.5(1)	41,43
_	20190608B	0.1178	+353(2)	< 17	$< 6 \times 10^{-2}$	41, 44, 45
-	20190611B	0.378	+20(4)	< 750	< 31	7,44
_	20190614D	$1.00^{+0.16}_{-0.54}$	_	< 34	< 12	46
_	r20190711A	0.522	+9(2)	< 45	< 3.7	32,44
_	20191001A	0.2340(1)	+55.5(9)	< 68	< 1	47
_	20191108A	0.5(2)	+474(3)	< 222	< 38	48, 49
_	r20200120E	0.00013(6)	-36.9^{a}	< 21	$< 3.2 \times 10^{-6}$	50 - 52
_	20200428 (MW)	Milky Way	_	$1.37(8) \times 10^{6}$	$< 2 \times 10^{-6}$	53 – 55
_	20200430A	0.1608	_	< 270	< 1.8	7,56
_	20200906A	0.3688(1)	_	< 19	< 0.75	1
_	r20201124A	0.0978(2)	$-889.5(7)^{a}$	20(3.5)	4.8×10^{-2}	57 – 59
_	20220207C	0.04304(1)	+162.48(4)	< 290	< 0.13	60,61
_	20220307B	0.2481(1)	-947(12)	< 290	< 4.9	60,61
_	20220310F	0.4779(4)	+11.4(2)	< 280	< 19	60,61
_	20220319D	0.01123(4)	+60(14)	< 281	$< 8.4 \times 10^{-3}$	60,61
_	20220418A 20220506D	0.6220(1) 0.3004(1)	+6(7) -32(4)	< 273 < 292	< 33 < 7.4	60, 61 60, 61
_	20220509G	0.0894(1)	-32(4) -109(1)	< 288	< 0.58	60,61
_	20220825A	0.24139(1)	+750(7)	< 288	< 4.6	60,61
_	r20220912A	0.24139(1)	+0.08(5.39)	< 50	$< 7.4 \times 10^{-2}$	62, 63, 64
_	20220912A 20220914A	0.1139	-0.00(3.39)	< 284	< 0.93	60
_	20220914A 20220920A	0.1139	-830(8)	< 290	< 1.9	60,61
_	20221012A	0.28467(7)	166(18)	< 284	< 6.4	60,61
_	20250316A	0.009	-	< 24.5	$< 3.1 \times 10^{-4}$	65, 66, 67
	20230310A	0.007		~ 24.5	₹ 5.1 × 10	05,00,07


Finding new PRS candidates!

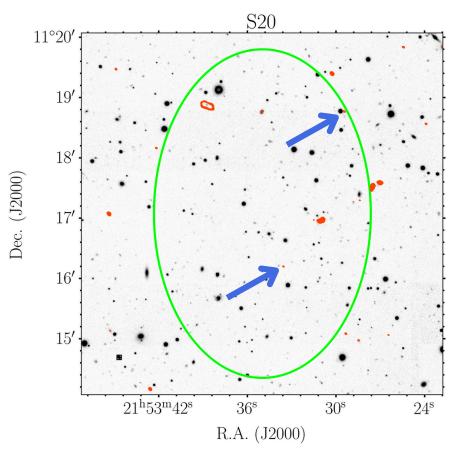


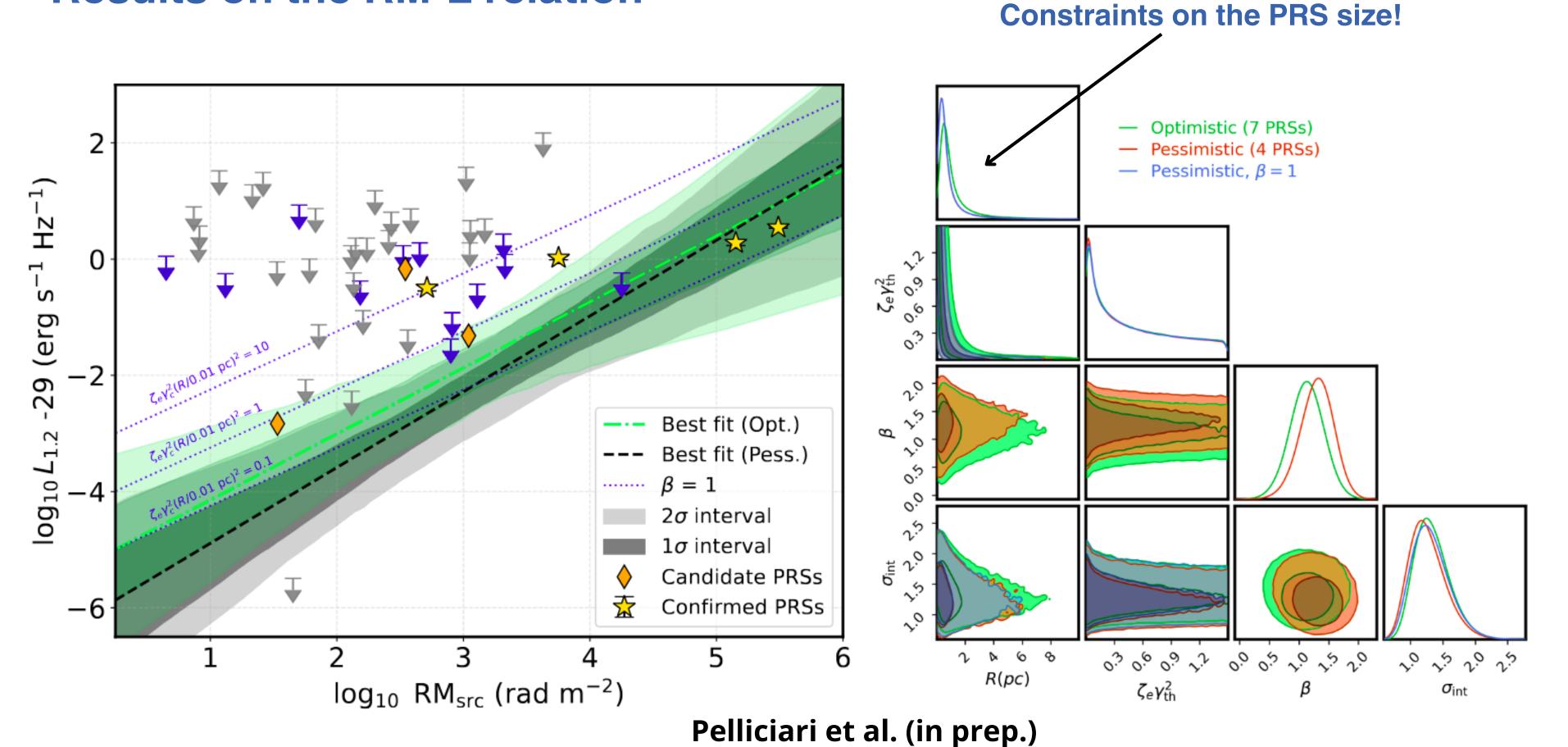

Pelliciari et al. (in prep)



6 new PRS candidates (i.e. compact at ≈ arcsec level and consistent with FRBs position)

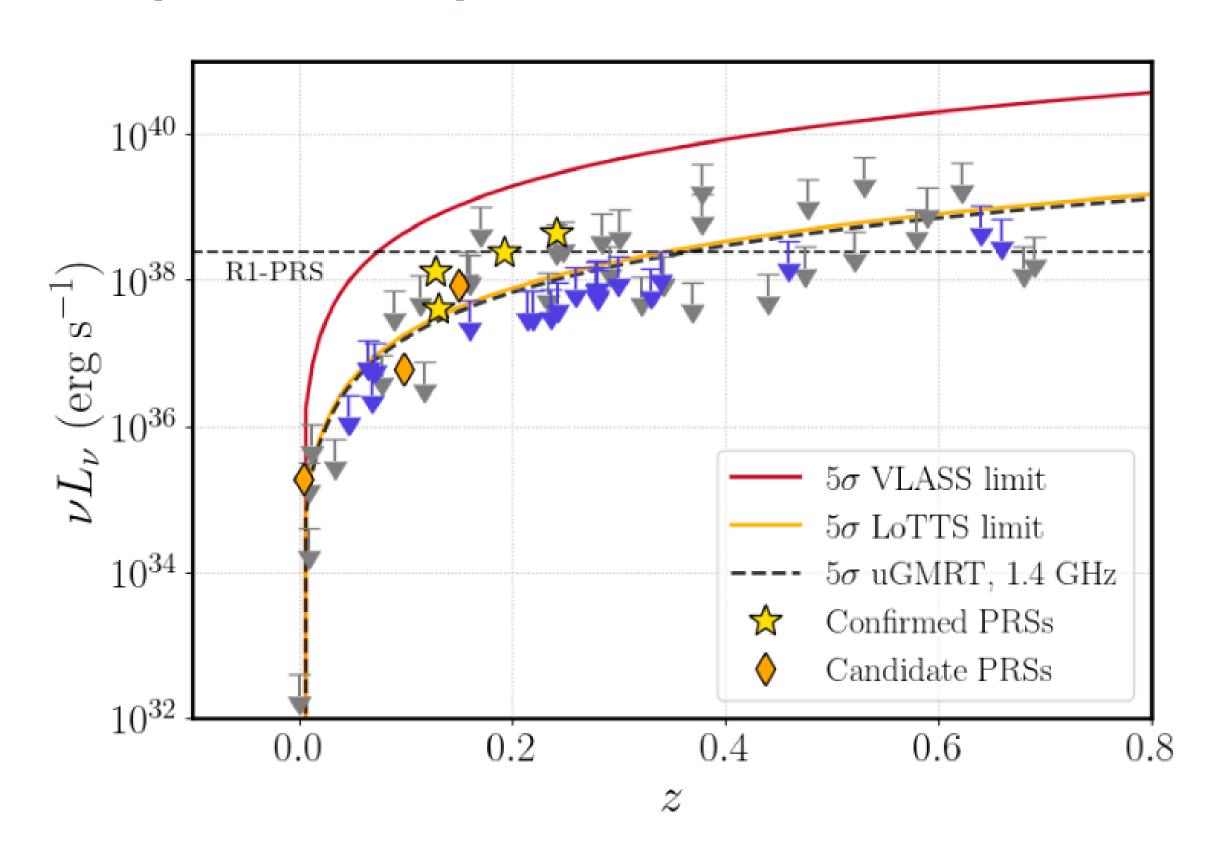
Finding new PRS candidates!




Pelliciari et al. (in prep)

6 new PRS candidates (i.e. compact at ≈ arcsec level and consistent with FRBs position)

Results on the RM-L relation

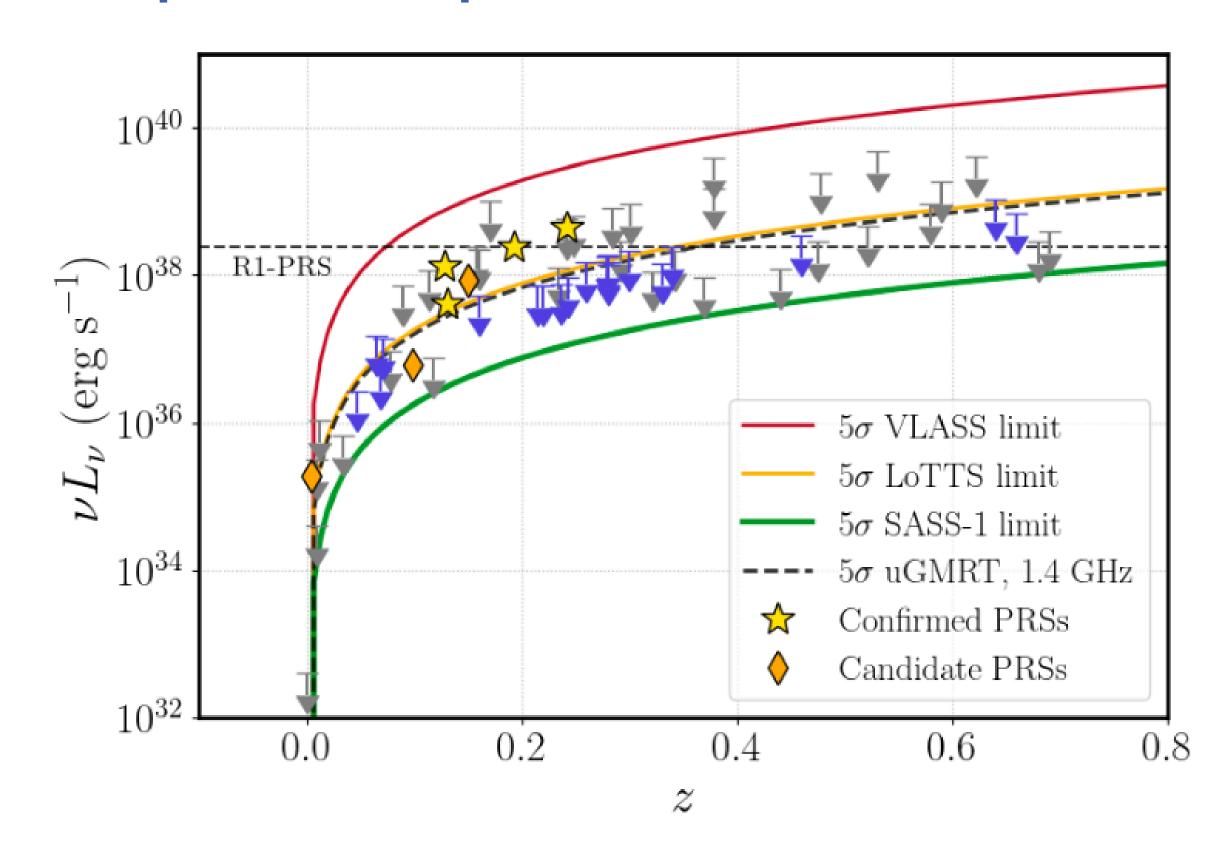

Occurrence of PRSs & SKA potential improvements

Confirmed PRSs occupy a narrow luminosity range!

The majority of luminosity limits are more stringent than PRS luminosities

→ PRSs as luminous as R1-PRS are very rare!

Is R1 (& R1-twin) an exotic/peculiar type of FRB?


Pelliciari et al. (in prep.)

Occurrence of PRSs & SKA potential improvements

Considering the **SKA1 All-Sky** continuum Survey (SASS-1) as a reference, with $5\sigma = 10$ µJy/beam sensitivity (Norris+14)

Also: **AA*** will have a synthesized beam approx. **5x better resolution** (1.3" x 0.5")

→ improvement also in the PRS compactness assessment

Pelliciari et al. (in prep.)

Conclusions

I presented two main ideas to study the **FRB progenitor(s)**, in particular the FRB-magnetar connection:

- Demographic surveys on SF galaxies. The FRB rate is expected to trace the SFR since magnetars are young objects. I presented the results from a survey on 7 SF galaxies, conducted with the Northern Cross radio telescope. From no detection in 700 hrs we were able to achieve a deep constraint on the FRB rate from magnetars similar to the Galactic SGR 1935+2154. This already provide an important hint for multi-formation channels for magnetars, with extragalactic, active FRBs originating from more exotic channels (e.g. AIC, MIC..). SKA AA* will provide competitive (and deeper) constraints on the magnetar rate using 1/10 of the observing time and, at the same time, FRB localisations
- Demographic survey focusing on PRS search. We conducted new uGMRT observations at 1.26 GHz and we constructed a large sample of 64 sources including also literature ones with a persistent luminosity limit available. This sample has been used to shed light on the RM-Lnu expected correlation and the PRS occurrence on FRBs. SKA will provide deep observations fundamental for PRSs searches (in particular for high-z FRBs!)

Conclusions

I presented two main ideas to study the **FRB progenitor(s)**, in particular the FRB-magnetar connection:

• Demographic surveys on FRB hosts. The FRB rate is expected to trace the SFR since magnetars are young objects. I presented the results from a survey on 7 SF galaxies, conducted with the Northern Cross radio telescope. From no detection in 700 hrs we were able to achieve a deep constraint on the FRB rate from magnetars similar to the Galactic SGR 1935+2154. This already provide an important hint for multi-formation channels for magnetars, with extragalactic, active FRBs originating from more exotic channels (e.g. AIC, MIC..). SKA AA* will provide competitive (and deeper) constraints on the magnetar rate using 1/10 of the observing time and, at the same time, FRB localisations

• Demographic survey focusing on PRS search. We conducted new uGMRT observations at 1.26 GHz and we constructed a large sample of 64 sources including also literature ones with a persistent luminosity limit available. This sample has been used to shed light on the RM-Lnu expected correlation and the PRS occurrence on FRBs. SKA will provide deep observations fundamental for PRSs searches (in particular for high-z FRBs!)

