Understanding AGN Accretion and Ejection with SKA

Chapter in Advancing Astrophysics with the SKA - II

The SKA-VLBI perspective on Radio-Quiet AGN

F. Panessa , T. An , An , F. Petley , A. Wang , R. D. Baldi , E. Behar , E. K. Bempong-Manful , F. Benar , N. Chang , S. Chen , E. K. Cui , F. D'Ammando , M. Kunert-Bajraszewska , S. Laha, Laor, A. Laor, M. Pérez-Torres , L. Prandoni, C. Ricci , and D. R. A. Williams-Baldwin ,

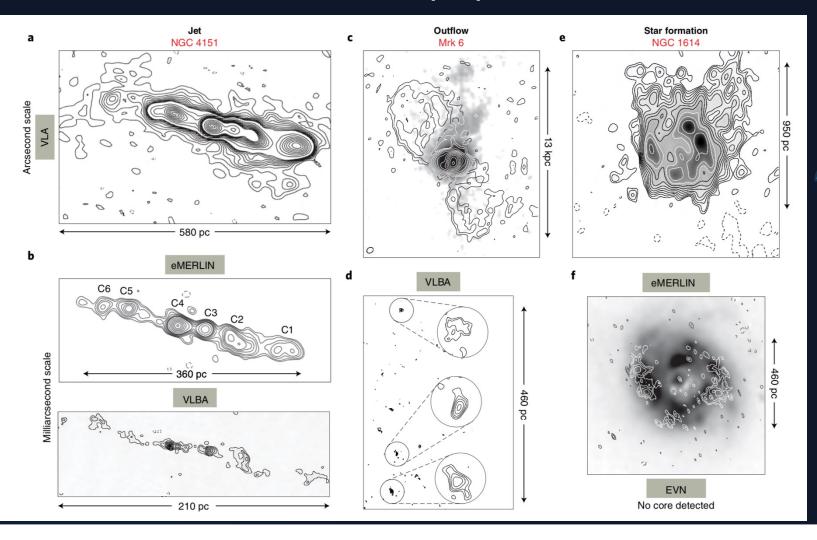
The Main Players: Physics & Feedback

The activity of an Active Galactic Nucleus is governed by the complex interplay of several components:

- Accretion Disk
- Hot Corona
- **➡ Wind u**ncollimated outflows
- **→ Jet** collimated relativistic ejections

→ all Radio emitters!

The "Radio-Quiet" AGN population

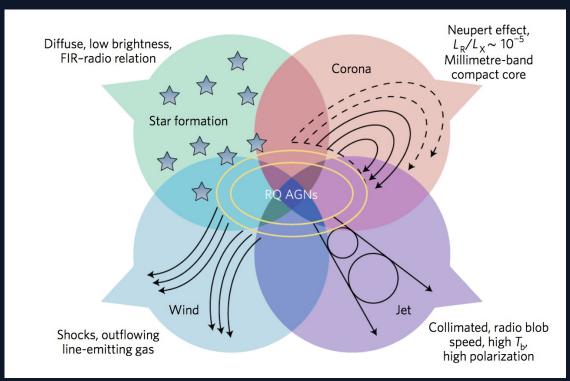

90% of Population

Radio-Quiet (RQ) AGN are not "silent". They represent the vast majority of the AGN population and dominate the faint radio sky.

Ubiquitous Detection

Contrary to the name, they show high detection rates at all frequencies, scales, redshifts, and Eddington ratios.

The "Radio-Quiet" AGN population



- Faint radio sources
 (~mJy to tens of mJy)
- Emission confined to sub kpc scales

The dominant SKA population

What Powers the Radio Emission?

- **Low-Power Jets:** Scaled-down, sub-relativistic, or "frustrated" jets confined to sub-kpc scales.
- **Winds & Shocks:** Outflows shocking the host galaxy gas (diffuse, steep spectrum).
- Disk Corona: Magnetic activity (Neupert effect, \$L_R/L_X \sim 10^{-5}\$).
- **Star Formation:** Host galaxy processes following the FIR-radio correlation.

Panessa, Baldi, Laor, Padovani, Behar & McHardy 2019, Nature Astronomy Review

Giroletti & Panessa 2009, Bontempi et al. 2012, Panessa & Giroletti 2013, Baldi et al. 2018, Chiaraluce et al. 2019, Panessa et al. 2019, Chiaraluce et al. 2020, Panessa et al.

Current VLBI Capabilities

High Resolution, Limited Sensitivity

- Current VLBI (EVN, VLBA) can resolve parsec-scale structures, effectively filtering out star formation.
- However, sensitivity limits mean we only detect the **brightest** cores, creating a biased view of the population.

The SKA-VLBI Revolution

Unprecedented Sensitivity

Reaching µJy levels allows for a complete census of the RQ population, not just the "tip of the iceberg."

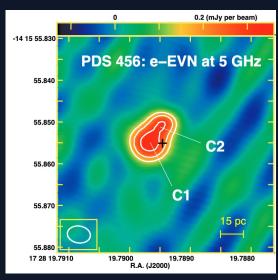
Sub-milliarcsecond Resolution

Isolating the nucleus from the host galaxy with extreme precision (< 0.1 pc scales).

The SKA-VLBI Revolution

Table 1: SKAO VLBI Diagnostics for Radio-Quiet AGN Emission Mechanisms

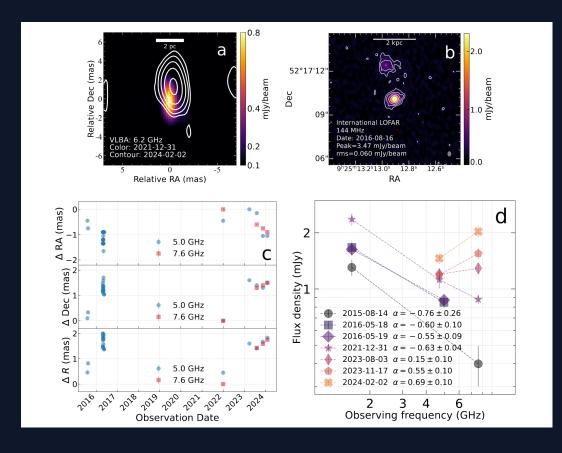
Mechanism	Primary Physical Origin	Characteristic Observational Signa-	Key SKAO-VLBI Requirements & Estimates
		tures (Pre-SKAO)	
Jets/Jet base	Scaled-down, mildly relativistic, colli-	Morphology: Compact core, unresolved,	Resolution : ≤ 1 mas imaging. Sensitivity : ~
	mated outflow from the accretion disk	or core-jet structure (< 1 pc). Spectrum :	μ Jy (AA4) to detect faint cores. Diagnostic :
	base.	Core: Flat or inverted ($\alpha \gtrsim -0.5$), SSA	Measure knot motions, map polarization struc-
		emission. Jet: optically thin steep spec-	ture
		trum. Kinematics: Proper motion de-	
		tected	
Corona	Non-thermal/thermal processes (magnetic	Morphology: Ultra-compact (< 0.1 pc),	Resolution : Required ≤ 1 mas resolution to
	reconnection) in the hot, compact accre-	unresolved core. Spectrum:	isolate the compact source. Sensitivity: High
	tion disk corona.	Flat/inverted $(L_R/L_X \sim 10^{-5})$.	cadence monitoring; μ Jy detection for vari-
		Kinematics: Expected rapid, non-steady	ability. Diagnostic : Simultaneous X-ray/radio
		flaring/variability.	monitoring to test the Neupert effect.
Winds	Synchrotron emission from shocks gen-	Morphology: Diffuse, irregular struc-	Resolution: High mas-resolution needed to re-
	erated as an uncollimated AGN outflow	tures, extending ~ 100 pc. Spectrum :	solve the outflow base from the jet region. Sen-
	interacts with the ISM.	Steep ($\alpha \approx -0.7$), optically thin. Kine-	sitivity: $\sim 2 \mu$ Jy beam ⁻¹ (SKA-Low) for faint
		matics: Slow bulk speeds.	relic/shocked plasma. Diagnostic : Polarization
			mapping (Faraday RM).
Star Formation	Diffuse synchrotron emission from super-	Morphology: Diffuse, host-like (kpc	Resolution : ≤ 1 mas resolution is necessary
	nova remnants and thermal free-free from	scales). Spectrum : Steep ($\alpha \approx -0.7$),	to resolve out the extended background. Sensi-
	HII regions.	matching the FIR-radio correlation. Kine-	tivity : $\sim \mu$ Jy sensitivity ensures the faint nu-
		matics: Non-variable; highly depolar-	clear component is cleanly isolated. Diagnos-
		ized.	tic: Spectral index mapping and spatial correla-
			tion with FIR tracers.


Jet and Wind Coexistence

- Growing evidence of coexistence of a radio jet with ionised and molecular gas outflows
- → Ultra-fast outflows in 27% of 26 Radio-Loud AGN sample (Tombesi et al. 2014)

Jet and Wind Coexistence

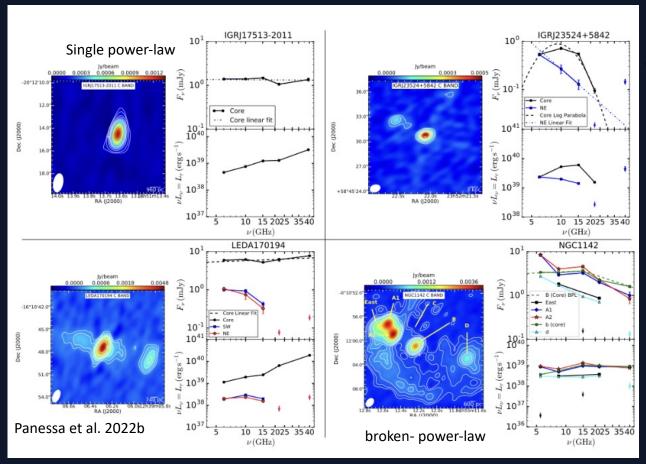
Observations reveal both a relativistic radio jet and a powerful, ultra-fast X-ray wind in the same object


This implies a complex magnetic geometry where collimated jets and wide-angle winds are launched simultaneously from the accretion flow

Yang+19

SKA VLBI → Different angular resolution, sensitivity, range of frequency

Jet ejection in a RADIO QUIET AGN: Mrk 110


dramatic spectral evolution from steep to inverted

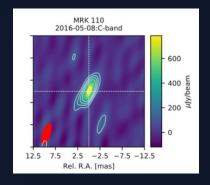
→ emergence of a new selfabsorbed dominating high frequency emission

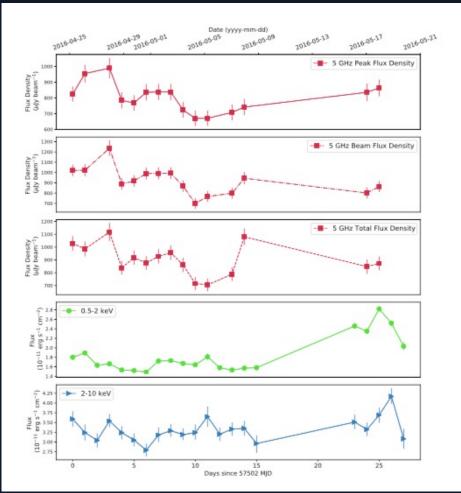
Wang+24

SKA VLBI → Spectral coverage & high angular resolution

Spectral slope to disentangle physical mechanisms

Panessa et al. 2022a

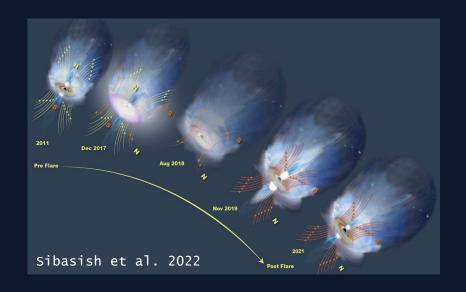

Conve


SKA VLBI → Large range of frequency

Daily Variability

VLBI monitoring of Mrk 110 reveals significant flux density changes on daily timescales.

- Implies an extremely compact emitting region (< 1 light day).
- Size constraint: < 180 Schwarzschild radii (R_s).
- Supports the Coronal origin or a very compact jet base.



Time Domain with SKA

The Dynamic Sky

We are discovering "Changing-Look" AGN and TDE-like events where the accretion state changes dramatically on human timescales.

Polarization: The Telltale Sign

Ordered Polarization

Indicates a structured magnetic field, favoring a **Jet** origin.

Low/Zero Polarization

Indicates isotropic emission or tangles fields, favoring a **Corona** or thermal origin.

The Early Universe (High-z)

Cosmic Noon (z ~ 2-3)

RQ AGN dominate the population. Understanding their feedback is crucial for galaxy evolution models.

The Challenge

At high redshift, star formation is intense. SKA-VLBI's high brightness temperature sensitivity is the ONLY way to disentangle AGN activity.

Conclusions

- ✓ **Dominant Population:** Radio-Quiet AGN are the "sleeping giants" of the radio sky (90% of population).
- **SKA-VLBI is Critical:** It provides the resolution to isolate the core and the sensitivity to detect it.
- S Time Domain & Polarization: rapid variability connects radio emission to the inner corona & ordered magnetic fields to identify jets
- **Complex Physics:** We are moving from simple classifications to complex models of coexisting jets, winds, and coronae.