
The Fifth National Workshop on the SKA Project

Contribution ID: 40 Type: not specified

MACS J1752+4440 across the spectrum: from SZ signatures to radio polarization

Thursday 27 November 2025 16:33 (3 minutes)

Within the filamentary web that constitutes the large-scale structure of the Universe, merging galaxy clusters represent some of the most energetic events since the Big Bang. A multi-wavelength approach-combining X-ray, optical, radio, and Sunyaev-Zel'dovich (SZ) observations-is essential to unravel their physics, trace their evolution, and assess the role of magnetic fields in shaping the intracluster medium (ICM).

The upcoming SKA1-Mid, with its Band 2 (0.95-1.76 GHz) and Band 5b (8.3-15.3 GHz) receivers will provide a significant improvement in this field, enabling high-sensitivity polarimetric studies at low frequencies and SZ–polarimetry synergy at higher frequencies.

In this context, I will present an important precursor study: a multi-frequency investigation of the galaxy cluster MACS J1752+4440, known to host a double radio relic system, using new observations with the Sardinia Radio Telescope (SRT) at 18.6 GHz and archival JVLA data at 1.6 GHz.

These data enabled a joint investigation of the system's total intensity, polarization, and SZ signatures. Importantly, the SRT observations provided the first detection of the SZ effect at \sim 20 GHz in this cluster, directly probing the scattering of CMB photons by hot electrons in the ICM. Meanwhile, the JVLA data at 1.6 GHz allowed for a Rotation Measure (RM) synthesis analysis, yielding an RM profile and insights into the depolarization properties of the relics.

By combining the SZ-derived density profile with the RM measurements, we estimated an average line-of-sight magnetic field strength of \sim 2 μ G. This result highlights the power of combining radio polarimetry with SZ observations to jointly probe the non-thermal and thermal components of the ICM in merging galaxy clusters.

Topics

Galaxy Clusters & LSS (relativistic particles and magnetic fields)

Author: COCCHI, Silvia (Istituto Nazionale di Astrofisica (INAF))

Co-author: LOI, Francesca (INAF-OAC)

Presenter: COCCHI, Silvia (Istituto Nazionale di Astrofisica (INAF))

Session Classification: Flash talks