

ON THE SYNERGY BETWEEN HWO AND GROUND-BASED HIGH-RESOLUTIONS SPECTROGRAPHS

Guilluy, GloriaINAF-OaTo

EXOPLANETARY ATMOSPHERES: LR VS HR SPECTROSCOPY

LOW-RESOLUTION SPECTROSCOPY

- Easier to model (small number of points)
- Retains continuum information
- Degeneracies occur due to overlapping bands
- Problems with deep clouds

HIGH-RESOLUTION SPECTROSCOPY

- Computationally intensive
- Continuum information is lost with the analysis
- Avoids degeneracy between species
- Sees above the clouds

A combines analysis of HRS and LRS enables a better comprehension of exoplanetary atmospheres

GAPS COLLABORATION DATA

Within the **GAPS team**, we have collected a total of >180 nights, Large Program GAPS2 (PI Micela)+BRIDGES (PI Borsa) with GIARPS@TNG, which combines:

- -GIANO-B in the near-infrared: spectral coverage (0.92-2.45) µm, resolution (R~50,000)
- -HARPS-N in the visible: spectral coverage (0.92-2.45) µm, resolution (R~50,000)

GUIBRUSH(R)

Graphical User Interface for Bayesian Retrieval at High Resolution

Atmospheric modeling

Molecular abundances
Cloud properties
Radiative transfer (PyratBay, pRT..)

→ MODEL SPECTRUM

Atmospheric detection via CCF4

Atmospheric retrieval

First results in cross-correlations

HD209458b , Giacobbe+2021

first detection of N>3 molecules in the nIR

WASP-69b, Guilluy+2022

WASP-80b , Carleo+2022

hints of disequilibrium chemistry

First retrievals

Detection of water and a preliminary characterisation of the atmospheres of the two hot Jupiters: KELT-8 b and KELT-23 Ab

First attemp in combining HR+LR

WASP-107 b

work in prep Thanks to F. Amadori

First attemp in combining HR+LR

SYNTHETIC GENERATOR

ANDES@ELT

The GIARPS regime today, on Jupiter-like planets, is the same of ANDES@ELT tomorrow, on rocky planets FUTURY European Extremely Large Telescope (ELT) will be the largest ground-based telescope at visible and intrared wavelengths

ANDES@ELT: is the high-resolution (R=100 000), optical-infrared spectrograph, two observational techniques

- high-dispersion for transmission-emission spectroscopy (0.5–1.8 µm interval (with the goal to extend the coverage to the blue and to the K band)
- high spatial contrast for reflected light (extreme Adaptive Optics (AO) and/or coronagraphic system) Y, J, and H bands
 — Characterization of exoplanets atmospheric composition and the exploration of habitable zone planets: reflected light atmospheric signal of a golden sample of 5 nearby non-transiting habitable zone earth-sized planets within a few tenths of nights

Name	$\begin{array}{c} \mathrm{SpecTyp}\ (T_{\mathrm{eff}}) \\ [\mathrm{K}] \end{array}$	d [pc]	V [mag]	P [d]	$m\sin i \ [m_{\oplus}]$	$R_{ m p} \ [R_{\oplus}]$	$T_{ m eq}$ [K]	sep [mas]	$ \begin{array}{c} \text{contrast} \\ [10^{-8}] \end{array} $	nights
Proxima Cen b	M (2900 K)	1.30	11.01	11.19	1.1	1.07	217	37.3	11.2	0.67
Ross 128 b	M (3163 K)	3.37	11.12	9.87	1.4	1.15	283	14.7	12.5	13
GJ 273 b	M (3382 K)	3.80	9.84	18.65	2.9	1.64	266	24.0	7.52	6.5
Wolf 1061 c	M (3309 K)	4.31	10.10	17.87	3.4	1.81	275	20.7	9.57	5.8
GJ 682 b	M (3237 K)	5.01	10.94	17.48	4.4	2.11	259	16.0	16.0	7.2

Palle+2025

ANDES@ELT

ANDES@ELT + HWO

Snellen+2022

e.g., Snellen+2015 CRIRES /VLT + AO for β Pictoris b

non-transiting massive planets

ANDES+ PCS for HDS+HCI

direct imaging+ cross-correlation

Complementary: atmospheric characterisation of multiplanetary systems around Sun-like stars, with the final aim of exploring their formation conditions.

Earth-like planets around solar-type stars_

IGRINS, GIANO-B, CRIRES+ESPRESSO + HST and JWST

