Beyond Habitability: A Multiscale Approach to Exoplanetary Biosignature Detection for HWO

Leveraging Extremophiles for Next-Generation Life Detection

Marco Marcellino¹ (marco.marcellino@inaf.it) et. all² Università La Sapienza, Rome, July 10-11, 2025

¹INAF - Osservatorio Astronomico di Palermo, Università degli Studi di Palermo ²Daniele Locci, Rashida Aslam, Angela Ciaravella, Antonio Jiménez-Escobar, Alfonso Mangione, Giuseppina Micela, Cesare Cecchi Pestellini Questioning the Paradigm: The Habitable Zone

Questioning the Paradigm: The Habitable Zone

Why Extremophiles? Expanding Life's Boundaries Life in the Clouds: Atmospheres as Biomes

Our Journey Today

Questioning the Paradigm: The Habitable Zone

Why Extremophiles? Expanding Life's Boundaries Life in the Clouds: Atmospheres as Biomes

A New Metric: Life Compatible Zone & Multiparametric Life Score

Our Journey Today

Questioning the Paradigm: The Habitable Zone

Why Extremophiles? Expanding Life's Boundaries Life in the Clouds: Atmospheres as Biomes

A New Metric: Life Compatible Zone & Multiparametric Life Score Exobioma Project: From CRNs to Biosignatures

Our Journey Today

Questioning the Paradigm: Beyond the Habitable Zone

Liquid Water: Only at the "right" distance?

Subsurface Oceans

Moons like Europa or Enceladus, far outside the traditional HZ, likely harbor vast liquid water oceans beneath icy shells, heated by tidal forces.

Liquid Water: Only at the "right" distance?

Subsurface Oceans

Moons like Europa or Enceladus, far outside the traditional HZ, likely harbor vast liquid water oceans beneath icy shells, heated by tidal forces.

Extreme Greenhouse Effects

Atmospheres with potent greenhouse gases can maintain surface liquid water on planets much farther from star than conventional HZ models [R.M Ramirez 2014]. Why Extremophiles? Expanding Life's Boundaries

Why Extremophiles? Expanding Life's Boundaries

• They **redefine "Habitable"**. Their existence proves that life's environmental limits are far broader than the traditional Habitable Zone, providing data-driven basis for our search.

Why Extremophiles? Expanding Life's Boundaries

• They are active **Planetary Engineers**. They don't just survive; they drive biogeochemical cycles ^[1], weather rock to create micro-habitats ^[2], and can fundamentally alter a planet's atmospheric composition ^[3].

1: Quatrini R. & Johnson D.B.2019 2: Walker J.J. & Pace N.R. 2007 3: Taubner R.S. et al. 2018

Green and blue endolithic lichens growing in antarctic sandstone (NASA) Right: Endolithic bacteria found in rock samples almost 3 km below the earth's surface. (US Dep.of Energy)

Life in the Clouds: Atmospheres as Biomes

• They validate atmospheres as viable niches. The discovery of Earth's "aerial biosphere" ^[5] confirms that microorganisms can thrive in the exact environments that HWO will observe.

5:Fröhlich-Nowoisky J. et al.2016 Model results for annual-mean near-surface concentrations of PBA: fungi in fine mode aerosol and fungi in coarse mode aerosol, and number of bacteria tracers

- Earth's own "Aerial Biosphere" proves microorganisms can survive and even proliferate in atmospheric layers.
- This concept extends to worlds with hostile surfaces, which may host temperate, life-friendly layers in their atmospheres.

Atmospheres: Plausible Niches for Life

- Earth's own "Aerial Biosphere" proves microorganisms can survive and even proliferate in atmospheric layers.
- This concept extends to worlds with hostile surfaces, which may host temperate, life-friendly layers in their atmospheres.

A hypothetical life cycle for microorganisms in the temperate cloud layers of Venus (Seager et al. 2021).

Surface conditions don't tell the whole story!

Atmospheres: Plausible Niches for Life

- Earth's own "Aerial Biosphere" proves microorganisms can survive and even proliferate in atmospheric layers.
- This concept extends to worlds with hostile surfaces, which may host temperate, life-friendly layers in their atmospheres.

A hypothetical life cycle for microorganisms in the temperate cloud layers of Venus (Seager et al. 2021).

Study (Author/ Year)	Organism(s) Tested	Simulated Atmospheric Conditions	Key Results (Survival, Growth, Gases Produced)
Kuzucan et al. 2025	E. coli K-12	Standard air, 100% CO ₂ , 90% N ₂ + 10% CO ₂ , 80% CH ₄ + 15% N ₂ + 5% CO ₂ , 100% H ₂ ; 22°C	Survival and growth in H ₂ and CH ₄ - rich (after acclimation); stronger growth in air; slower growth in CO ₂ . Lag, log, stationary phases observed.
Seager et al. 2020	E. coli, S. cerevisiae	100% H ₂ ; controls (air, CO ₂ /N ₂ , He)	Survival and reproduction in 100% H ₂ lower growth rates compared to air. <i>E</i> <i>coli</i> produced DMS, NH ₃ , N ₂ O, isoprene, etc.

Experimental data showing E. coli proliferation in 100% hydrogen atmospheres, validating gas giants as potential habitats.

Surface conditions don't tell the whole story!

A New Metric: The Multiparametric Life Score

Concept: The Life-Compatible Zone

• A quantitative, local concept: Identifies specific atmospheric layers where physical conditions (T, P, radiation) overlap with the known tolerance ranges of extremophiles.

Concept: The Life-Compatible Zone

- A quantitative, local concept: Identifies specific atmospheric layers where physical conditions (T, P, radiation) overlap with the known tolerance ranges of extremophiles.
- It moves beyond a stellar-centric HZ to a planet-specific atmospheric niche.

Concept: The Life-Compatible Zone

- A quantitative, local concept: Identifies specific atmospheric layers where physical conditions (T, P, radiation) overlap with the known tolerance ranges of extremophiles.
- It moves beyond a stellar-centric HZ to a planet-specific atmospheric niche.
- It answers the question: "Where in this atmosphere could life as we know it survive?"

Concept: The Life-Compatible Zone

- A quantitative, local concept: Identifies specific atmospheric layers where physical conditions (T, P, radiation) overlap with the known tolerance ranges of extremophiles.
- It moves beyond a stellar-centric HZ to a planet-specific atmospheric niche.
- It answers the question: "Where in this atmosphere could life as we know it survive?"

Metric: The Multiparametric Life Score

• A quantitative, global metric: Integrates the probability of habitability across the entire atmospheric column to produce a single, comparable score.

Concept: The Life-Compatible Zone

- A quantitative, local concept: Identifies specific atmospheric layers where physical conditions (T, P, radiation) overlap with the known tolerance ranges of extremophiles.
- It moves beyond a stellar-centric HZ to a planet-specific atmospheric niche.
- It answers the question: "Where in this atmosphere could life as we know it survive?"

Metric: The Multiparametric Life Score

- A quantitative, global metric: Integrates the probability of habitability across the entire atmospheric column to produce a single, comparable score.
- Its primary function is to **rank and prioritize exoplanets**, optimizing the use of observational resources like HWO.

Concept: The Life-Compatible Zone

- A quantitative, local concept: Identifies specific atmospheric layers where physical conditions (T, P, radiation) overlap with the known tolerance ranges of extremophiles.
- It moves beyond a stellar-centric HZ to a planet-specific atmospheric niche.
- It answers the question: "Where in this atmosphere could life as we know it survive?"

Metric: The Multiparametric Life Score

- A quantitative, global metric: Integrates the probability of habitability across the entire atmospheric column to produce a single, comparable score.
- Its primary function is to **rank and prioritize exoplanets**, optimizing the use of observational resources like HWO.
- It answers the question: "How promising is this entire planet as a potential habitat?"

This moves us from a binary "yes/no" to a nuanced, quantitative ranking.

The Exobioma Project: From Data to Biosignatures

The Modeling Process & Goal

 The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a **multiscale understanding**: from the specific biochemical reactions of a single microbe...

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a **multiscale understanding**: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a **multiscale understanding**: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.
- Using this data, we build complex Chemical Reaction Networks (CRNs) to simulate an "inhabited atmosphere".

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a multiscale understanding: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.
- Using this data, we build complex Chemical Reaction Networks (CRNs) to simulate an "inhabited atmosphere".

The Outcome & Impact

• Our simulated "exobiomes" yield a prioritized list of Volatile Organic Compounds (VOCs).

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a multiscale understanding: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.
- Using this data, we build complex Chemical Reaction Networks (CRNs) to simulate an "inhabited atmosphere".

The Outcome & Impact

- Our simulated "exobiomes" yield a prioritized list of Volatile Organic Compounds (VOCs).
- These VOCs are powerful and specific **biosignature candidates**.

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a multiscale understanding: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.
- Using this data, we build complex Chemical Reaction Networks (CRNs) to simulate an "inhabited atmosphere".

The Outcome & Impact

- Our simulated "exobiomes" yield a prioritized list of Volatile Organic Compounds (VOCs).
- These VOCs are powerful and specific **biosignature candidates**.
- Our framework provides HWO with a targeted "shopping list" of molecules to search for.

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a multiscale understanding: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.
- Using this data, we build complex Chemical Reaction Networks (CRNs) to simulate an "inhabited atmosphere".

The Outcome & Impact

- Our simulated "exobiomes" yield a prioritized list of Volatile Organic Compounds (VOCs).
- These VOCs are powerful and specific **biosignature candidates**.
- Our framework provides HWO with a targeted "shopping list" of molecules to search for.
- This transforms HWO's mission from a blind search into a targeted validation campaign.

The Modeling Process & Goal

- The Exobioma Project goes one step further than MLS, integrating detailed microbial metabolic pathways.
- This creates a multiscale understanding: from the specific biochemical reactions of a single microbe...
- ...to how those reactions collectively alter an entire planetary atmosphere.
- Using this data, we build complex Chemical Reaction Networks (CRNs) to simulate an "inhabited atmosphere".

The Outcome & Impact

- Our simulated "exobiomes" yield a prioritized list of Volatile Organic Compounds (VOCs).
- These VOCs are powerful and specific **biosignature candidates**.
- Our framework provides HWO with a targeted "shopping list" of molecules to search for.
- This transforms HWO's mission from a blind search into a targeted validation campaign.

To: Could life survive here? -> From: What chemical evidence would it produce?

Extremophile Database

- 300 species with metagenomic data
- Each species mapped to its bacterial CRN

Extremophile Database

- 300 species with metagenomic data
- Each species mapped to its bacterial CRN

From Individual CRNs to a Full Atmospheric Model

From Individual CRNs to a Full Atmospheric Model

From Individual CRNs to a Full Atmospheric Model

Extremophile Database

- 300 species with metagenomic data
- Each species mapped to its bacterial CRN

We start from 300 individual networks to derive a single, complex atmospheric network.

Biochemical Model

Integrates all 300 bacterial CRNs based on atmospheric compatibility (MLS score)

On Left: *E. coli* CRN from KEGG Database. On Right: Two CRNs of the Earth's atmosphere without the polluting molecule CFC at the top and with a minimal concentration at the bottom. Large changes in the abundances of many other chemical species are evident. T.Fisher et al. 2025

Guiding the Habitable Worlds Observatory

Input: Predicted Atmospheric CRN **Input:** Predicted Atmospheric CRN Analysis Algorithm Identifies most abundant and volatile species

1. Assess: MLS Identify high-potential worlds by comparing planetary conditions (T, P, Radiation) to our extremophile database.

1. Assess: MLS

Identify high-potential worlds by comparing planetary conditions (T, P, Radiation) to our extremophile database.

2. Model: CRNs

For high-MLS worlds, simulate 'atmospheric exobiomes' by injecting microbial metabolism into chemical networks.

1. Assess: MLS

Identify high-potential worlds by comparing planetary conditions (T, P, Radiation) to our extremophile database.

2. Model: CRNs

For high-MLS worlds, simulate 'atmospheric exobiomes' by injecting microbial metabolism into chemical networks.

3. Predict: VOCs

From the models, derive a targeted "shopping list" of specific Volatile Organic Compounds to serve as biosignatures.

1. Assess: MLS

Identify high-potential worlds by comparing planetary conditions (T, P, Radiation) to our extremophile database.

2. Model: CRNs

For high-MLS worlds, simulate 'atmospheric exobiomes' by injecting microbial metabolism into chemical networks.

3. Predict: VOCs

From the models, derive a targeted "shopping list" of specific Volatile Organic Compounds to serve as biosignatures.

4. Validate: HWO

Use the Habitable Worlds Observatory to perform targeted observations and search for the predicted VOCs.

- The Habitable Zone is a starting point, but it is too limited for the search for life.
- Our **Multiparametric Life Score (MLS)** provides a data-driven method to rank planets based on their compatibility with known extremophiles.
- The **Exobioma Project** connects microbial biology to atmospheric chemistry to predict specific, observable biosignatures (VOCs).
- This framework will directly **guide HWO's strategy**, optimizing target selection and data interpretation.
- We are moving astrobiology from speculation to a **testable**, **data-driven field**.