AGN and Galaxy Evolution: Exploring the Final Frontier with HWO

221-1-1-1

Alessandro Marconi Department of Physics and Astronomy, University of Florence INAF-Arcetri Astrophysical Observatory

Aim of this talk

- Which AGN research topics will be "hot" in the 2040s?
- address these topics?

What capabilities must Habitable Worlds Observatory have to

Outline

- last ~10 years and the role of JWST
- Future landscape & Synergies with HWO: expected key AGN/galaxy research topics in ~20 years from now
- capabilities

• The current landscape: from AGN as "light bulbs" to breakthroughs in the

Possible science cases, HWO current concept and missing instrumental

AGN & Galaxies in the 1990s → early 2000s

AGN treated as isolated "light bulbs"; AGN & galaxy-evolution communities mostly separate

First direct **BH mass measurements with HST** gas/stellar dynamics (e.g. NGC 4258 Miyoshi+1995, M87 Macchetto, AM+1997)

Discovery of **BH-bulge scaling relations** – M_{BH} – σ , M_{BH} – M_{bulge} ¹⁰¹⁰ (Magorrian+1998; Ferrarese & Merritt 2000; Gebhardt+2000)

Birth of the AGN-feedback hypothesis to explain those relations (e.g., King 2003)

Wide-field optical/NIR surveys (2MASS, SDSS) allow AGN demographics

X-ray deep fields (Chandra, XMM) uncover large population of obscured AGN and their evolution \rightarrow idea of BH relics (Ueda+ 2003)

Emerging picture of anti-hierarchical ("downsizing") growth also for AGN: massive BHs form early (Hasinger+ 2005)

First Feedback Clues & Cosmic Evolution (2000–2015)

Molecular / ionised outflows detected in local quasars → first direct feedback evidence

Mrk 231 CO & OH outflows – IRAM 30 m (Feruglio+ 2010), Herschel-PACS (Sturm+ 2011)

8 m-class IFU spectroscopy (VLT/SINFONI, Keck/OSIRIS) maps kpc-scale AGN winds

Cosmic AGN "downsizing" quantified: luminous AGN peak at $z \approx 2$, low-luminosity peak later

Soltan argument refined – local dormant BH mass density matches integrated quasar light (Marconi+ 2004, Shankar+ 2004)

Growing evidence that most massive BHs formed early & rapidly

Seeds of multi-wavelength synergy: Spitzer mid-IR (2003-2009/2020), ALMA submm (2009–), Herschel far-IR (2009-2013), Fermi γ-ray (2008-), together with Chandra & XMM provide multiwavelength AGN census & studies

A Decade of Breakthroughs (2015–2025)

Event Horizon Telescope (2017–2022)

- First-ever images of M87* and Sgr A* event horizons
- Confirmed GR predictions in strong gravity
- Magnetic-field structure driving relativistic jets

Era of Gravitational-Wave Astronomy (2015–)

- LIGO/Virgo detect frequent stellar-mass BH mergers
- GW190521 hints at ~IMBH merger ($85 65 M_{\odot}$ Abbot+2020)
- Opens path to multi-messenger AGN environments

Time-Domain AGN Science

- Zwicky Transient Facility and the All-Sky Automated Survey for Supernovae: Thousands of tidal disruption events (TDEs)
- Changing-look AGN flip type on timescales of months-years (LaMassa+2015)
- Machine-learning analyses applied to large time series (2020-)

2017-2018 **EHT** Collaboration

The JWST revolution (2022 -)

SMBHs at Cosmic Dawn

- BH masses $\gtrsim 10^8 10^9 \,\mathrm{M_{\odot}}$ detected at $z \gtrsim 10^{10}$
- Challenges seeding & growth models (< 500 Myr after Big Bang)

"Little Red Dots" & Over-massive BHs

- LRDs: compact, IR-bright sources at $z \approx 6-10$, likely AGN
- Confirms BH/stellar-mass ratios up to 10× local at high z → early BH-dominated growth

Dust-Obscured AGN Census

- NIRSpec spectra reveal hidden AGN missed in UV/optical
- Revisions to high-z AGN luminosity function **Resolved Feedback in Action**
- IFU maps show kpc-scale ionised & molecular outflows
- First direct look at AGN regulating star formation beyond the local universe

The era of multi-messenge

e	r astroph	ys	ics, 202	$5 \rightarrow 2$	204
	Gravitational-wave Radio/mm Neutrino (TeV-PeV) IR (0.6-28 μm)		I IR (0.5-2.5 μm) VIS/NIR (0.5-2 μm) Optical (0.32-1 μm) Optical/IR	UV/opt/ X-ray (/IR (highlig 0.2-12 keV 20 GeV-30
	2040	2045	2050	20	55

What We'll Know by the 2040's: Observational Landscape

Complete AGN Census

by SKA/ngVLA + Athena + JWST $\rightarrow 10^7 - 10^8$ AGN across 0 < z < 15**Resolved Feedback at All Scales** phase energy injection (radio mode feedback) **BH Mergers in Real Time** ET / Cosmic Explorer give IMBH merger demographics to cosmic dawn Multi-messenger "routine" observations

AGN flares tied to GW or neutrino triggers; coordinated Al-driven (?) alert network schedules follow-up within minutes

- Rubin variability + Roman/Euclid + Radio-quiet & heavily obscured AGN found
- ELT-class IFUs: 50-100 pc scale outflows at $z \approx 1 4$ (quasar mode feedback) Athena (X-ray from hot halos and ICM) + SKA (radio lobes of jets) trace multi-
- LISA provides masses, spins, merger rates of $10^4 10^7 \,\mathrm{M}_{\odot}$ binaries out to $z \approx 10^{-10} \,\mathrm{M}_{\odot}$

What We'll Know by the 2040's: new analysis tools

Integrated Photo-ionisation + Kinematic Fitting

MOKA3D, Marconcini+24) fitted jointly to IFU cubes to infer physical properties of NLR

Distances and velocities for individual BLR lines (from photoioniz. models?) → type-1 BH mass accuracies $\leq 0.1 \text{ dex}$

AI-Driven Simulation Emulators

Neural networks trained on ~10³ full hydro / radtran sims \rightarrow millisecond prediction of spectra & kinematics

Bayesian inference can deliver posterior PDFs on physical parameters straight from datacubes

Sub-parsec GRMHD + RadTran Coupling

Real-time SED & polarisation outputs from MHD+GR accretion simulations used in spectral fits

Direct link between EHT-scale physics and galaxy-scale feedback via nested simulations

IMBH & Seed-BH Physics

Zoom-ins ($\leq 1 \text{ pc}$) in next-gen cosmological simulations track direct-collapse seeds and Pop III

- Next generation photoionization (e.g. HOMERUN, Marconi+24) & kinematical/dynamical models (e.g.

- remnants & subsequent mergers; predictions tested with LISA rates and VLT/JWST/ELT detections

SC1 The BH Engine: Feeding & Feedback on Sub-parsec Scales

Map the pc-scale accretion zone in nearby Seyferts & Quasars

- Directly image UV/optical wind base (C IV, N V, O VI) on ≤1-10 pc scales in nearby AGN. **Resolve multi-phase outflows & shocks**

Link jet base to galaxy-scale impact

- Link EHT horizon data (jet axis) to kpc-scale feedback mapped with ELT IFUs. Benchmark AGN feedback models
- compare HWO wind velocity-ionisation profiles with predictions from Next Gen Simulations

Capability	Science Requirements	Why We Need It
Wavelengths	0.10 – 0.55 μm (rest-UV lines C IV, N V, O VI)	Wind diagnostics & BLR physics
Angular resolution	0.01" in the UV (≈ 1 pc at 20 Mpc)	Resolve launch region & jet base
Spectral resolution	R ≥ 10000 (≈ 30 km s ⁻¹)	Separate narrow wind components
High-contrast imaging	Contrast $\approx 10^{-8}$ at 0.01"	See faint sub-pc structures next to bright nucleu
Polarimetry	Linear polarisation accuracy ≈ 0.1 %	Distinguish magnetically-arrested vs. radiative winds
Cadence	Daily/weekly repeats for a few months	Reverberation & variability mapping

Instrument idea: UV-optical integral-field spectro-polarimeter that can work behind the coronagraph.

• Measure launch radii, mass-loading, and magnetic geometry of outflows; e.g., test magnetically arrested disks (MAD) vs. radiative driving.

SC2 Co-evolution at Cosmic Dawn: First Black Holes & Their Host Galaxies

Detect 10⁵–10⁶ M⊙ seed BHs and measure BH/stellar-mass ratios in first galaxies. Map Ly α / C IV outflows and inflows on kiloparsec scales (~200 pc resolution at z = 10). Provide rapid UV-NIR spectroscopy for LISA massive-BH mergers and early TDEs. Trace first-galaxy metal enrichment and its coupling to BH growth.

Capability	Science Requirements	Why We Need It
Wavelengths	0.12 – 2.5 μ m (rest-UV lines redshift to 1–2 μ m)	Detect seed BHs & host stars
Angular resolution	≤ 0.03″ at 1 µm (≈ 200 pc at z = 10)	Resolve kpc-scale outflows & host morphologies
Spectral resolution	R ≈ 5000 – 10000	Measure line IDs & outflow speeds (~30–60 km s
Sensitivity	Point sources AB ≈ 31 (10 nJy) in ~10 h	Detect emission lines from 10 ⁵ −10 ⁶ M⊙ seeds
Rapid follow-up	Slew to new target within ≈ 2 h	Followup LISA BH-merger afterglows & early TDE
FoV	Few-arcmin imager + few-arcsec IFU	Capture host context and kpc-scale gas

Instrument idea: broad-band UV–NIR IFU/imager with a built-in "target-of-opportunity" mode.

SC3 Metal-Enriching Black Holes: AGN Production & Host-Galaxy Impact

Derive BLR and NLR metallicities (N V/C IV, O III], Fe II) out to $z \approx 10$.

• First direct metallicities for JWST "little-red-dots"

Map radial metallicity gradients (~100 pc) and quantify metal mass-loading in AGN-driven winds.

- Quantify metal dilution vs. AGN-driven inflows/outflows
- Test whether AGN eject more metals than supernovae in massive hosts

Compare metal budgets with Next Gen. Simulations predictions and Athena/SKA halo measurements.

Capability	Science Requirements	Why We Need It
Wavelengths	0.10 – 0.75 μm	Key metallicity ratios (N V/C IV, O III], Fe II)
Angular resolution	0.03" at 250 nm (≈ 300 pc at z ≈ 1)	Map metal gradients out to kpc
Spectral resolution	R ≥ 10000	Measure weak lines to 0.1 dex accuracy
Signal-to-noise	S/N \ge 50 per resolution element on $\mu \approx 26$ mag arcsec ²	Reliable abundance diagnostics
IFU FoV	≥ 2″ × 2″	Cover extended narrow-line region / outflows

Instrument idea: deep-UV high-resolution IFU

Current baseline vs desiderata

Current Baseline	SC 1 – Feeding & Feedback	SC 2 – Cosmic-Dawn Co-evolution	SC 3 – Metal Enriching BHs
 Telescope 6–10 m segmented 0.1–2.5 μm diff-limited @ 0.5 μm 	 Aperture and UV coverage meet spatial-resolution target 	 ✓ Aperture and NIR reach allow detection of seed BHs at z ≈ 10 	✓ Collecting area sufficient for S/ N≥50 on faint UV metallicity lines
High-contrast Coronagraph • Contrast $< 10^{-10}$ • Vis R ≈ 140 • NIR R $\approx 70 / 200$	X Lacks required high-dispersion (R ≥ 10000) feed and polarimetry for wind kinematics	(Not critical—seed BHs unresolved) baseline acceptable	(Not required for metallicity mapping)
 High-resolution Imager 3'×2' FoV 0.2–2.5 μm 	X Needs ≤5 mas pixels in UV to Nyquist-sample 0.01″ core	 ✓ Large FoV + 0.03" sampling at 1 µm will separate host and nucleus at z ≈ 10 	X Require ≤30 mas pixels in NUV to resolve 100 pc gradients at z ≈ 1
 UV MOS 0.1–1.0 μm R 500 – 50 000 ~840 x 420 apertures in 2'×2' FoV 	Keplace with 0.01" integral-field slicer for sub-pc mapping	X Extend wavelength to 2.5 µm to capture C IV/N V at z ≈ 10	✓ Resolving power adequate, but high sensitivity at R~10000 needed
 Fourth Instrument (TBD) NUV coronagraph FUV IFS UV spectropolarimeter 	Ideal instrument: UV–optical IFU + spectro-polarimeter, R ≈ 10000, 0.01" spaxels	Ideal instrument: 0.12–2.5 µm IFU, R ≈ 5000-10000, rapid ToO mode	Ideal instrument: deep-UV high- resolution IFU, R ≥ 10 000, ≥2" × 2 FoV

What is needed: IFU capability with at least R~10,000 and at least 0.1-1 µm range (ideally up to 2.5 µm), ~0.01" spaxels i.e. a NIRSPEC like instrument (with IFU and MOS) but which includes the UV. Modify the UV MOS instrument to UV MOS+IFU?

AGN breakthroughs with JWST were NIRSpec-driven

- Hidden quasars at z > 10, early metallicity, and outflow kinematics all came from the dual MOS + IFU modes.
- HWO's flagship AGN program demands the same architecture
- A NIRSpec-class spectrograph shifted to 0.1–1.0 (possibly up to 2.5) µm for HWO
- Multi-object (\geq 1000 micro-shutters) for high-z surveys
- Integral-field unit (R \approx 10000, FoV $\geq 2'' \times 2''$, ~0.01'' spaxels) for detailed physics
- Optional (spectro)polarimetric capability for sub-parsec winds and accretion disk physical properties

IFU.

MOS, and optionally (spectro)polarimetry, is the single critical addition that will allow groundbreaking AGN science for HWO in the 2040s

Conclusions

- No other planned facility provides space-based UV-opt-NIR spectroscopy with both MOS and
- Take home message: A NIRSpec-like spectrograph expanded to UV-optical, equipped with IFU,