

Tracing galaxy evolution with resolved stars: the HWO perspective

> Francesca Annibali (INAF – OAS Bologna)

Shaping the Italian contribution to HWO July 10-11 2025 Università La Sapienza - Rome

Tracing galaxy evolution with resolved stars

Color-magnitude diagrams are powerful tools to age-date stars

Tracing galaxy evolution with resolved stars

Color-magnitude diagrams are powerful tools to age-date stars

Tracing galaxy evolution with resolved stars

The importance of spatial resolution

seeing limited

HST (2.4 m) diffr. limited

Resolving individual stars to deep magnitudes requires high angular resolution in crowded fields!

Spatial resolution in context

Spatial resolution in context

- From JWST, massive quiescent galaxies at 3<z<5 (i.e. Carnall+24)
- No example of giant Es in the LG
- Cen A at 3.8 Mpc, peculiar/merging E/S0
- Nearest "classical" giant E is NGC3379 at 10 Mpc

Harris + 2007, (NGC 3379 halo) HST, 38 k sec in V + 22 k sec in I

RGB: ages within (2-13) Gyr.

- From JWST, massive quiescent galaxies at 3<z<5 (i.e. Carnall+24)
- No example of giant Es in the LG
- Cen A at 3.8 Mpc, peculiar/merging E/S0
- Nearest "classical" giant E is NGC3379 at 10 Mpc

Weisz et al. 2023, WLM (D=0.9 Mpc)

- From JWST, massive quiescent galaxies at 3<z<5 (i.e. Carnall+24)
- No example of giant Es in the LG
- Cen A at 3.8 Mpc, peculiar/merging E/S0
- Nearest "classical" giant E is NGC3379 at 10 Mpc
- At 10 Mpc, HB is at F090W~30, F150W~29.5. With JWST, this would require ~14 h science exp.

Weisz et al. 2023, WLM (D=0.9 Mpc)

- From JWST, massive quiescent galaxies at 3<z<5 (i.e. Carnall+24)
- No example of giant Es in the LG
- Cen A at 3.8 Mpc, peculiar/merging E/S0
- Nearest "classical" giant E is NGC3379 at 10 Mpc
- At 10 Mpc, HB is at F090W~30, F150W~29.5. With JWST, this would require ~14 h science exp.
 - Also with MORFEO+MICADO@ELT, reaching the HB at 10 Mpc is hard...

٠

- From JWST, massive quiescent galaxies at 3<z<5 (i.e. Carnall+24)
- No example of giant Es in the LG
- Cen A at 3.8 Mpc, peculiar/merging E/S0
- Nearest "classical" giant E is NGC3379 at 10 Mpc
- At 10 Mpc, HB is at F090W~30, F150W~29.5. With JWST, this would require ~14 h science exp.
- Also with MORFEO+MICADO@ELT, reaching the HB at 10 Mpc is hard...
- With HWO, HB detected in¹
 V, I with ~1+1 h (FWHM ~0.02", 0.03")
 B, V with ~2+1 h (FWHM ~0.017", ~0.02")

PARSEC SSP, 12 Gyr, Z=0.0001, D=10 Mpc 26 26 27 27 28 28 > 29 - 29 30 30 31 31 32 32 0 1 0 B - VV - I

¹ETC <u>https://hwo.stsci.edu/camera_etc</u>.

Many giant Es in Virgo Cluster!

10 E galaxies in Virgo (Anand et al. 2025)

Many giant Es in Virgo Cluster!

10 E galaxies in Virgo (Anand et al. 2025)

Accessing inner regions of Virgo Es with M&M@ELT

Accessing inner regions of Virgo Es with M&M@ELT

inner, high-crowding regions

Reaching the HB at 18 Mpc with HWO

PARSEC SSP, 12 Gyr, Z=0.0001, D=18 Mpc

HB reached at 18 Mpc with¹:

~4 h in V ~4.5 h in I ~7 h in B

Not limited to giant Es, but:

- Galaxies of all morphological types
- IZw18, a unique place to study SF in primeval conditions

¹ETC <u>https://hwo.stsci.edu/camera_etc</u>.

HWO & the origin of the UV upturn in Es

- UV upturn in Es at λ ~2000 Å
- Correlates with **o** and metallicity
- Origin still debated, a possibility is an **old**, **hot population of EHB stars:**

a) in the metal poor tail of the MDF;b) with high Z and high He content;c) with enhanced mass loss at high Z:d) He-enriched like in GCs

UV spectroscopy could constrain the metallicity of the population responsible for the UV upturn

Massive stars in extremely metal poor environments

BCD IZw18, Z~2-3 % solar, D=18 Mpc

Hunt et al. submitted Vaught et al. submitted Arroyo-Polonio et al. (2025) See also Mingozzi et al. (2025) for [NeV] in SBS0335-052

Possible ionization mechanisms:

- AGN
- Very metal poor supermassive stars (Pop III)
- Metal poor stars + ULX
- X-rays from star cluster winds

Massive stars in extremely metal poor environments

BCD IZw18, Z~2-3 % solar, D=18 Mpc

IZw18, HST ACS F555W, F606W, F814W IZw18, ELT, M&M simulation J, H, K

15" x 15"

HWO could potentially provide images with the same angular resolution of M&M but in the UV, resolving the youngest and brightest stars! Important to well sample the PSF in the UV (5 mas/px vs 10 mas/px?) to maximize resolution.

HWO MOS will characterize kinematics of the ionized gas / outflows / superbubbles, potentially responsible for hard RF and escape of ionizing photons

Conclusion

HWO could provide major progress in:

- Through resolved-star CMDs as deep as the HB, provide the detailed SFH of massive Es since the earliest epochs
- Shed light on the nature of the UV upturn in massive E galaxies
- Constrain the ancient SFH of highly unevolved systems, like IZw18
- Constrain the IMF in the high mass range at very low Z
- Understand feedback from very metal poor, high mass stars (hard RF, escape of ionizing photons...)
 Fundamental to have the highest possible spatial resolution!