

Opportunties for Transformative Astrophysics with the Habitable Worlds Observatory

www.habitableworldsobservatory.org

Jason Tumlinson STScl Head of Community Missions

A <u>super-Hubble</u> to search for life in the universe and perform transformative astrophysics

What is HWO?

Notional HWO architecture

Before we proceed, let us consider the words of the famous Italian astronomer. . .

Galileo Galilei

To succeed with flagships requires vision, optimism, patience, and teamwork.

Duccio Macchetto head of ESA @ STScI 1970s-2008

Vision, Teamwork, Optimism & Patience: The Elements of Success

THE FigsterplorationsRATION with international SPAC arthers ESCOPE $\frac{1996}{2003}$ 1989 cocktail napkin designs Sunshield Segmenter HST after 3 orbits mirm 50K

Proceedings of a Workshop Space Telescope Science Institute Baltimore, Maryland, 13-15 September 1989

Ariane V launcher selected

Instruments delivered

launch from French Guyana

2013 2021

European & Canadian ruments Selected MIRI, NIRSpec, NIRISS)

Revolutionary Telescope and Instruments

Telescope	
Diameter	~6.0 m (inner)
Bandpass	~100-2500 nm

Fourth Instrument To be defined

Coronagraph

High-contrast imaging and imaging spectroscopy

Bandpass

Contrast

~1e-10 Vis: ~140 NIR: ~70, 200

~200-1800 nm

Venus

Earth

High-Resolution Imager

UV/Vis and NIR imaging		
Bandpass	~200-2500 nm	
Field-of-View	3x2 arcmin	
~67 science filters + grism		

High-precision astrometry?

UV Multi-Object Spectrograph

UV/Vis multi-object spectroscopy and FUV imaging

Bandpass	~100-1000
Field-of-View	2x2 arcmin
Apertures	0.2 x 0.1 se
Resolution	500-50,00

Unprecedented Resolution! 100

Wavelength (microns)

HWO will resolve galaxies to ~200 parsec scales <u>at any redshift!</u>

Open source community ETC tools <u>hwo.stsci.edu</u>

HABITABLE W R L D S OBSERVATORY

Imaging Camera

......

deep fields mapped 8x faster than Hubble and 4x JWST

1.4 million individual shutters for intensive UV spectroscopy

reliable photometry in fields 50x denser than Hubble

seeing all the building blocks of galaxies

29th magnitude point sources in an hour

precise proper motions from sub-microarcsecond astrometry mapping the baryon cycle in emission and absorption

BITABLE DSERVATORY

Transformative Astrophysics Capabilities

resolving the outer solar system as well as in-situ spacecraft

Your idea here!

servicing to achieve leaps in instrument capabilities

he Most Chemically Primitive Stars

- Massive stars produce most of the common heavy element (C, N, O).
- Early in cosmic history, these massive stars may have lived and died in a manner very different from today.
- The metal-poor galaxy I Zwicky 18 is one of the few places in the local Universe where we can observe individual massive stars that are chemically primitive.

- can resolve massive, clustered stars at UV wavelengths where they emit most of their radiation.
- measure temperature, mass, metal content, and age for these unique stellar populations.
- Hubble lacks the resolution and JWST & Roman lack the UV sensitivity to perform these observations.

Why Do Massive Galaxies Stop Forming

- The most massive galaxies are "quenched" they have ceased to form stars.
- HWO will address this complex multi factor question from many angles.
- One potential causal factor is that the galaxies lose or destroy the
 Astronomers can view the extremely diffuse gas in the CGM by using a background source - a distant quasar - to observe absorption.

<u>Only HWO:</u>

- can reach enough distant sources to observe the CGM of more than 100 galaxies while their quenching is underway.
- HST is severely limited by its size and JWST does not observe UV wavelengths where the gas appears.

200

3

Billionsoi

Timing the mergers of the largest black

- the largest black holes in the centers of galaxies form in galaxy mergers.
- the massive black holes can take much longer to merge than the galaxies containing them, up to a billion years.
- a binary black hole in a galaxy acting as a gravitational lens imprints subtle features into the image of the background

stimulated strong lenses at HWO

binary 10⁸ M
o BHs

single 10⁸

NASA Vis Studio render of merging supermassive black holes

- can constrain the timescales of SMBH mergers with 1000 strong lenses discovered in Roman and other all-sky surveys
- has optical imaging resolution and PSF stability sufficient to sample ~1000 systems in ~100 hours.
- Hubble lacks the resolution and JWST lacks the sensitivity to perform these observations.

What is the mass

- Dark Matter makes up about it is.
- structure formation theory ho dark matter, but the smallest the DM particle.

we can constrain the energy of the DM particle by counting the smallest

- can detect the smallest galactic satellites of nearby large galaxies by counting individual stars.
- can build a sample of 500-1000 of these "ultrafaint" satellites for cosmologically useful constraints on the DM particle mass.
- Hubble lacks the sensitivity and JWST lacks the optical-band resolution to perform these observations.

How does star formation propagate within

- normal galaxies assemble their disks over more than 10 billion years
- the remaining stellar populations can be read by astronomers to map the history of star formation in detail in a kind of "fossil record" going back 10 billion years.
- but, these maps must be resolved to see individual stars and

- has the resolution and sensitivity to map star formation
- in hundreds of local dwarf galaxies.
- can map spirals beyond Andromeda
- can reach the nearest giant elliptical galaxy
- Hubble lacks the sensitivity and JWST lacks the optical-band resolution to perform these observations.

Seeing the smallest building blocks of galaxies

z = 2 galaxy, 10⁶ solar masses (m_{AB} ~ 30)

Preliminary simulation Credit: Postman, Snyder (STScI)

Seeing the smallest building blocks of galaxies

0.1

0.5

LT	
ST	

deep fields mapped 8x faster than Hubble and 4x JWST

1.4 million individual shutters for intensive UV spectroscopy

reliable photometry in fields 50x denser than Hubble

seeing all the building blocks of galaxies

29th magnitude point sources in an hour

precise proper motions from sub-microarcsecond astrometry mapping the baryon cycle in emission and absorption

BITABLE DSERVATORY

Transformative Astrophysics Capabilities

resolving the outer solar system as well as in-situ spacecraft

Your idea here!

servicing to achieve leaps in instrument capabilities

Astronomy shows us we are a small part of a vast cosmos.

you are here

Let's remember our cosmic origins

9

you are here

Earth teems with life...

Where did it all come from?

thanks to biology, we know we share kinship with all life on Earth . . .

... but has Nature repeated this experiment elsewhere in the Cosmos?

let's review . . . all of cosmic history in one slide

stars form inside galaxies

galaxies form out of the cosmic web

heavy elements mix in & out of galaxies

some stars form with Earth-like planets

stars die and release the elements

life arises on some planets ? or just one?

The Tree Of Life is rooted in the stars. .

... because stars create the elements ...

1% exploding white dwarfs

9% light elements from the Big Bang **17%** dying low-mass stars

73% exploding mass stars

https://chandra.harvard.edu/photo/2017/casa_life/

. . so that . . .

You Were Here

in the remains of an exploded star. . .

And here! -

in the stellar nursery that formed the Sun . . .

in the Milky Way's CGM, before gravity brought you back in!

You Were Here Too

if HWO can find Earthlike planets

then we can say

and find signs of life in their air

WE are here

... and HWO will show us the cosmic history we share with this other life!

Vision, Teamwork, Optimism & Patience: The Elements of Success

First explorations with international partners

1996 1995-9 2002 2003

cocktail napkin designs

2021

2025

Yardstick Designs, **Compelling Storytelling**, **Building International** Collaborations

We are here

Let's do this part together!

Ariane V launcher selected

Instruments delivered

launch from **French Guyana**

2013 2021

European & Canadian Instruments Selected (MIRI, NIRSpec, NIRISS)

2035 +

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

graze mille!

