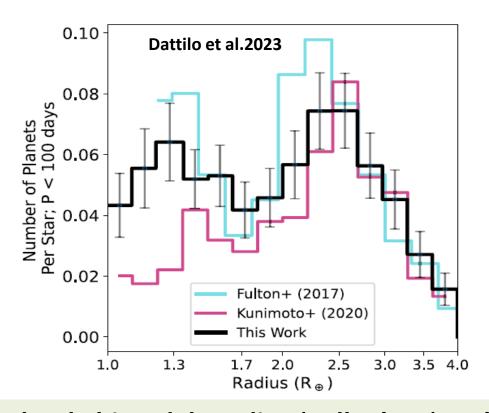

Demographics of Terrestrial Planetary Systems:

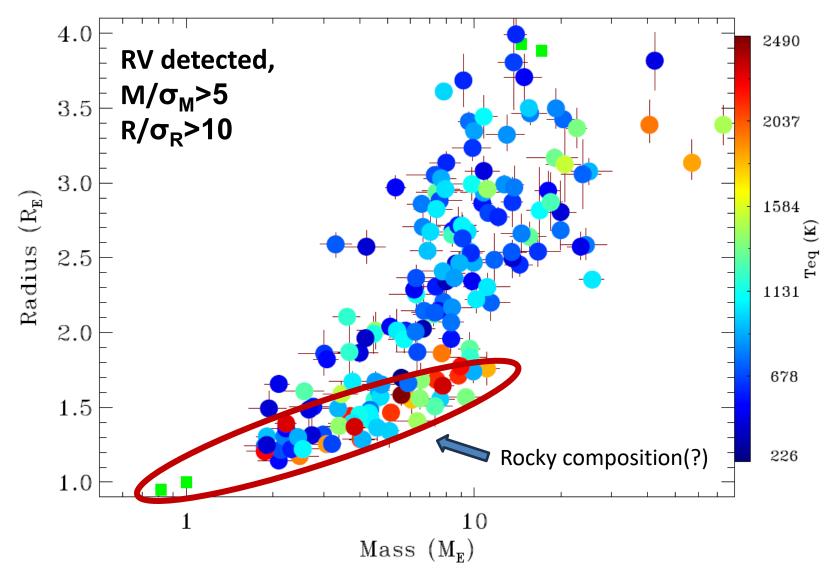
Exoplanet Demographics



Orbital Period [days]

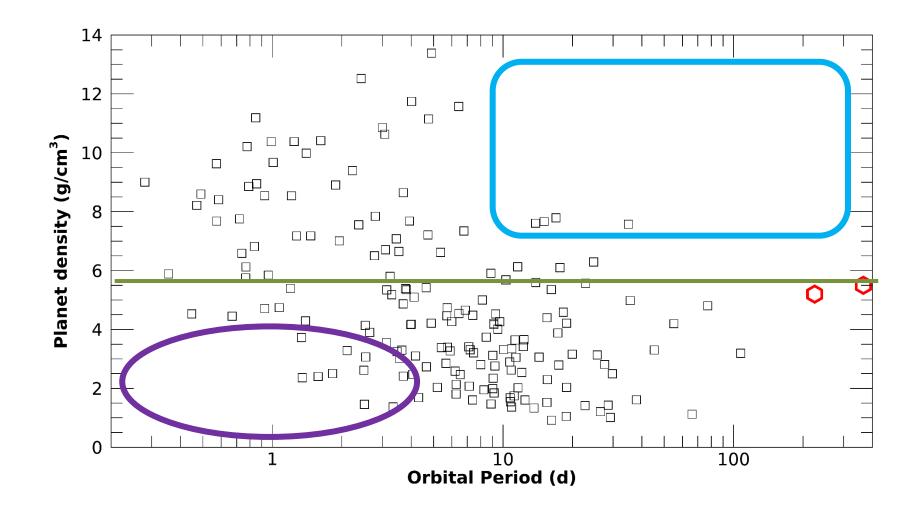
Radius Distribution

Clearly bimodal: Radius 'Valley' or 'Gap'

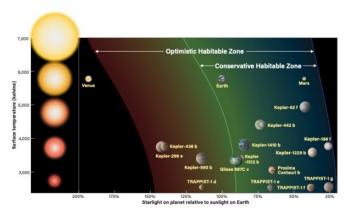

Two classes of close-in (P < 100 d or so) small planets:

- a) (mostly) rocky super-Earths
- b) volatile-rich or/ gas-dominated sub-Neptunes

M-R Relation: Small Planets



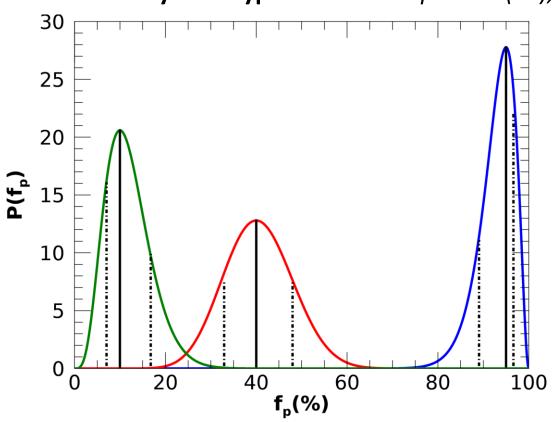
From Ultra-Short to 'Long' Periods



Planet type (planet-radius range in R_{\oplus})	η_{\oplus} (planets per star)	Reference	Notes
0.5 – 1.5	$0.37^{+0.48}_{-0.21} - 0.60^{+0.90}_{-0.36}$	Bryson et al. (2021)	FGK dwarfs ^(a)
0.5 - 1.5	$0.57_{-0.21}^{-0.21} = 0.00_{-0.36}^{-0.36}$ $0.58_{-0.33}^{+0.73} = 0.88_{-0.51}^{+1.28}$	Bryson et al. (2021)	FGK dwarfs ^(b)
0.75 – 1.5	$0.13^{+0.09} - 0.11^{+0.07}$	Kunimoto & Matthews (2020)	G dwarfs $^{(a,b)}$
0.5 – 1.5	$0.302^{+0.181}_{-0.113}$	Bryson et al. (2020a)	GK dwarfs $^{(a,c)}$
0.5 – 1.5	0.126+0.095	Bryson et al. (2020a)	G K dwarfs $^{(a,d)}$
0.7 - 1.5	0.055 0.11 ^{+0.06}	Pascucci et al. (2019)	$FGK dwarfs^{(a,f)}$
0.7 – 1.5	0.05+0.07	Pascucci et al. (2019)	$FGK dwarfs^{(a,g)}$
0.75 – 1.5	0.03	Hsu et al. (2020)	M dwarfs ^(a)
0.75 - 1.5	$0.03_{-0.12}$ 0.04 - 0.40	Hsu et al. (2019)	GK dwarfs ^(e)
0.85 - 1.4	0.33	Hsu et al. (2019)	GK dwarfs(a)
0.72 - 1.7	0.34 ± 0.02	Zink & Hansen (2019)	G dwarfs ^(a)
1.0 - 1.5	$0.41^{+0.29}_{-0.12}$	Hsu et al. (2018)	GK dwarfs(h)
1.0 - 1.5	$0.31^{+0.02}_{-0.03}$	Garrett et al. (2018)	G dwarfs ^(a)
0.5 - 1.5	$0.88^{+0.04}_{-0.03}$	Garrett et al. (2018)	G dwarfs $^{(a)}$
0.5 - 1.0	$0.215^{+0.148}_{-0.099}$	Kopparapu et al. (2018)	G dwarfs $^{(i)}$
1.0 - 1.75	$0.145^{+0.071}_{-0.0.061}$	Kopparapu et al. (2018)	G dwarfs $^{(j)}$
0.7 - 1.5	0.36 ± 0.14	Mulders et al. (2018)	$G stars^{(a)}$
1.0 - 1.5	$0.16^{+0.17}_{-0.07}$	Dressing & Charbonneau (2015)	M dwarfs ^(a)
1.5 - 2.0	$0.12^{+0.10}_{-0.05}$	Dressing & Charbonneau (2015)	M dwarfs ^(a)
1.0 - 1.5	$0.21^{+0.08}_{-0.08}$	Burke et al. (2015)	G dwarfs $^{(k)}$
0.5 - 1.5	$0.50^{+0.40}_{-0.20}$	Burke et al. (2015)	G dwarfs $^{(k)}$
1.0 - 2.0	0.064+0.034	Silburt et al. (2015)	FGK dwarfs $^{(l)}$
0.6 - 1.7	$0.004_{-0.011}$ $0.017_{-0.009}^{+0.018}$	Foreman-Mackey et al. (2014)	G dwarfs ^(a)
1.0-2.0	0.00059	Schlaufman (2014)	G stars $^{(m,n)}$
1.0 - 2.0	$0.057^{+0.022}_{-0.017}$	Petigura et al. (2013b)	G stars $^{(m)}$
0.5 - 1.4	$0.15^{+0.13}_{-0.06}$	Dressing & Charbonneau (2013)	M dwarfs ^(a)
0.5 - 1.4	$0.48^{+0.12}_{-0.24}$	Kopparapu (2013)	M dwarfs ^(a)
0.5 - 2.0	0.34 ± 0.14	Traub (2012)	FGK dwarfs ^(o)
0.8 – 2.0	$0.028^{+0.019}_{-0.009}$	Catanzarite & Shao (2011)	FGK dwarfs ^(p)
0.5 – 3.0	2.75 ± 0.33	Youdin (2011)	G dwarfs ^(q)

Earth Twins: Occurrence Rates

Within 1-2 sigma: η_{θ} may be 9%, or 90%... ...and just an extrapolation!


SAPIENZA UNIVERSITY (ITALY), 10/07/2025

'Ordered' Architectures: Occurrence

Solar-System-type: inner small planets (SP), outer, cold Jupiters (CJ)

Barbato et al. 2018

Zhu & Wu 2018

Bryan et al. 2019

Rosenthal et al. 2022

Pinamonti et al. 2023

Bonomo et al. 2023

Bryan & Lee 2024

Zhu 2024

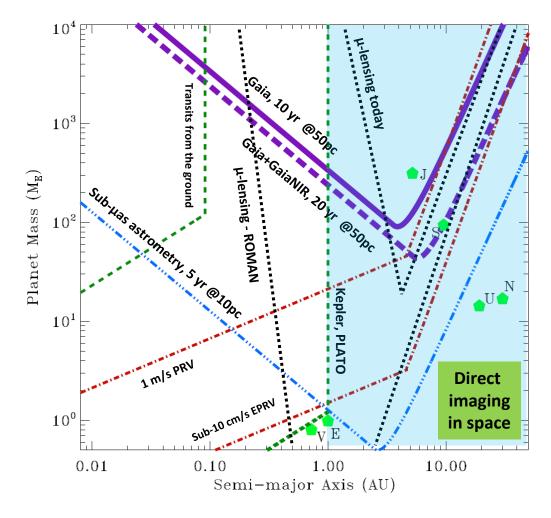
Bryan & Lee 2025

Bonomo et al. 2025

Many attempts to determine (primarily) $f_p(CJ|SP)$ or $f_p(SP|CJ)$!

Occurrence η_{ss} of true Solar-System-like architectures is today <u>unknown...</u>

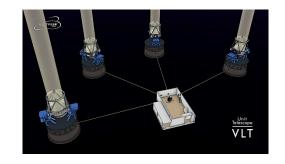
The BIG Questions



- **A)** What is the diversity of planets and <u>planetary system</u> <u>architectures</u>?
- **B)** How do the physical and <u>architectural properties</u> depend on stellar and environmental properties?
- C) How common are true Solar System analogs?
- **D)** Where are the nearest Earth-like planets?

Exoplanet Architectures: Now and By 2040-2045

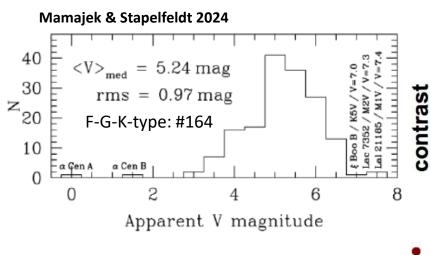




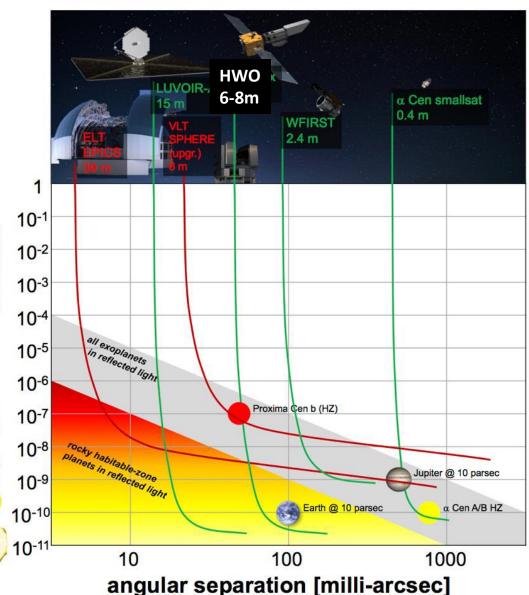
The Gaia-RV-PLATO Synergy

Take 2x10⁴ P1 PLATO targets (bright, nearby FGK dwarfs):

- Achieve homogeneous sensitivity to Earth-like transiting planets
- EPRV follow-up for mass confirmation for all of them
- Gaia DR4 & DR5 deliver homogeneous sensitivity to gas giants on Jupiter-like orbits


Determine η_{θ} and η_{ss} for the first time without extrapolations!

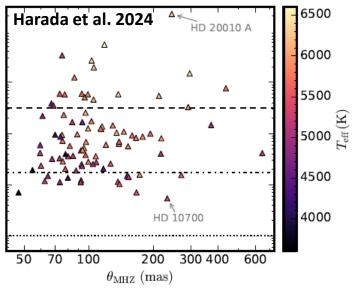
Earth-Like Planets: The Ultimate Frontier



Habitability and atmospheric biosignatures of temperate terrestrial exoplanets around the <u>nearest</u> <u>solar-type</u> stars

Finding the targets FIRST is mandatory in order to maximize science return

True Earth twin: K = 9 cm/s, a@10pc = 0.3 μas



EPRVs: The Challenge

20-yr@1 m/s: Not nearly enough!

10-yr@10 cm/s: Coming up! (ESPRESSO, EXPRES, MAROON-X, HARPS3)

Present Record Holders:

7000

Proxima d: P=5d, K= 40 cm/s, M_p sin(i) = 0.3 M_E Barnard e: P=7d, K= 22 cm/s, M_p sin(i) = 0.2 M_E

30 F G N=54 N=39 M N=39 M N=3

5000

Effective Temperature [K]

4000

- Bet

Expected RV jitter from activity: Between a few and 10-15 m/s

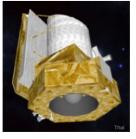
From >10 to >100 times larger than the signal we seek!

Ways of mitigating the problem:

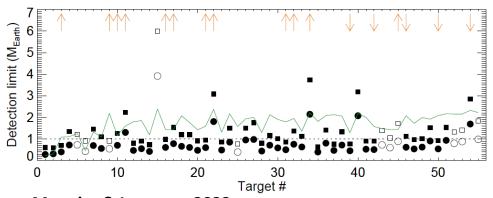
- directly on the spectra
- on the RVs/activity indicators

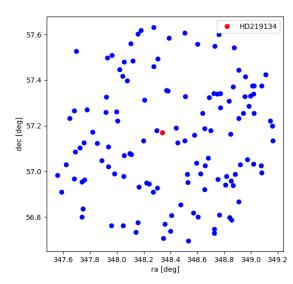
SHAPING THE ITALIAN CONTRIBUTION TO HWO

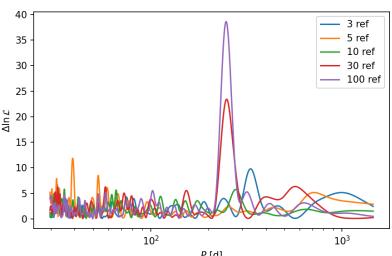
6000


ROME - LA SAPIENZA UNIVERSITY (ITALY), 10/07/2025

Astrometry: Post-Gaia Outlook


- Relative astrometry, visible wavelengths
- Precision 30x better than Gaia's


Theia (?)


HWO

- Stellar activity: not much of an issue!
- Trade-offs: FOV size, systematics

Meunier & Lagrange 2022

Pinamonti et al. in prep. ROME - LA SAPIENZA UNIVERSITY (ITALY), 10/07/2025