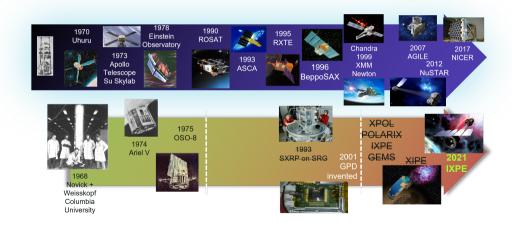


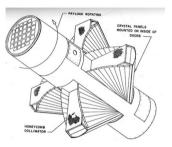
Neutron stars in X-ray binaries as observed by the Imaging X-ray Polarimetry Explorer

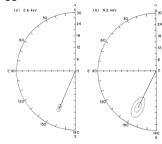
Alessandro Di Marco alessandro.dimarco@inaf.it INAF-IAPS


PhD School Lucchin

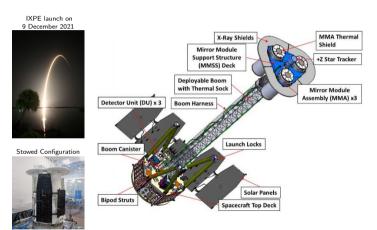
2025 October 27

X-ray polarimetry...

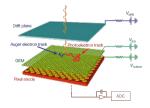

While X-ray astrophysics evolved... X-ray polarimetry took longer time to evolve


Results before IXPE

From Weisskopf, Galaxies 2018, 6, 33

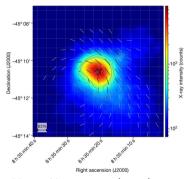


- Polarization detected for the Crab [Weisskopf+ ApJL 220 (1978) 117]
- \blacksquare Sco X-1 PD < 2.7% at 2.6 keV
- Upper limits for Cyg X-2, Cyg X-1, Cen X-3 and Her X-1


Imaging X-ray Polarimetry Explorer (IXPE)

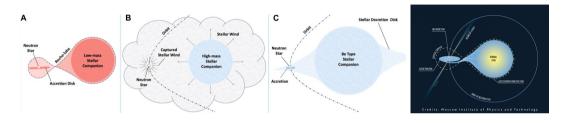
■ NASA-ASI SMall EXplorer mission dedicated to (linear) X-ray imaging polarimetry

- Energy range: 2–8 keV
- 3 identical telescopes
 - → Grazing-incidence X-ray mirrors (3+1 spare)
 - Imaging X-ray photoelectric polarimeters based on Gas Pixel Detector design (3+1 spare)
 - → The two are separated by an extensible boom



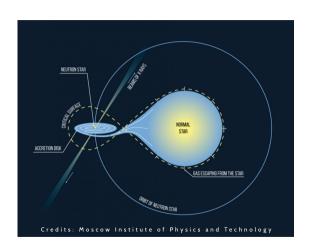
[Weisskopf+ JATIS, 8 (2), 2022]

Where polarization come from?


- Polarization is a vector
 - measures geometry Electric vector position angle (EVPA)
- Synchrotron radiation gives EVPA perpendicular to magnetic field lines and PD = (p+1)/(p+7/3) up to 70%
- Scattering gives EVPA perpendicular or parallel to scattering plane and PD∼ few percent
- Reflection gives EVPA perpendicular to scattering plane and PD up to 20–30%
- Strong magnetic fields gives EVPA transported along magnetic field orientation
- Strong gravitational fields gives EVPA parallel-transported along space-time geodesics

Xie+, Nature 612 (2022) 658

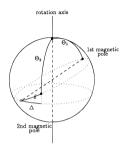
Accreting NS in X-ray binaries

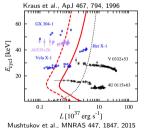

[R. M. Ludlam et al., FASS 10, 1292500, 2023]

- A) LMXB system where the NS accretes from a stellar companion via Roche-lobe overflow forming a disk
- B) NS in a HMXB that accretes from material captured from stellar winds that are launched from the companion
- C) NS accreting from the decretion disk of a Be-type stellar companion
- D) NS accreting matter from a High Mass Stellar companion via funneling

Classic X-ray pulsars

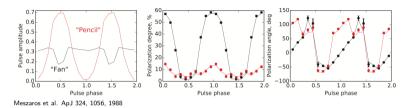
Accreting pulsars



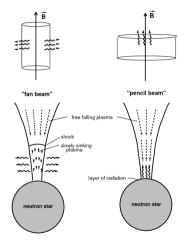


- Luminosity $\sim 10^{37}$ erg/s
- Pulsation periods 1–1000 s
- \blacksquare Accretion flow ($\dot{M} \sim 10^{17} {
 m g/s})$ driven by magnetic field
- Accretion in the polar caps, disk disruption by magnetic field

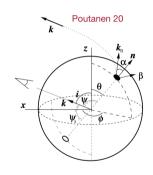
Pulse profiles and spectra


- Several efforts for pulse profile decomposition
 - Based on assumption that observed asymmetry of pulse profiles is due superposition of two symmetric components displaced wrt each other
- Cyclotron lines can allow to measure *B*

$$E_{cyc} \sim \frac{n}{1+z} 11.6 \text{ [keV]} B \text{ [} 10^{12} \text{ G]}$$


ightharpoonup E_{cyc} dependence on luminosity used to distinguish the pencil/fan beam regimes

What polarimetry can do?



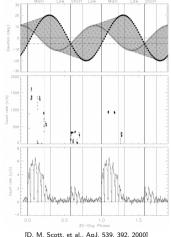
- Cyclotron lines (birefringence) + pulsations = polarization in X-rays
- $lue{}$ Early models assume homogeneous slab/column predicting $\sim 10-100\%$ polarization degree
- Detailed models do not exist yet
 - QED effects both within atmosphere and magnetosphere are important
- An attempt for a detailed model before IXPE launch [Caiazzo, Heyl, MNRAS 501, 129, 2021] predicted PD> 50%

What polarimetry can do?

- Pulsar geometry can be costrained by modeling polarization variations with spin-phase
- Naively PA is expected to be aligned with magnetic field
 - expect PA of a rotating dipole to follow RVM model [Radhakrishnan & Cooke AL, 3, 225, 1969]
 - PA alignment due to vacuum polarization expected to result in similar behaviour
 - ▶ PA is less sensitive to details of radiative transfer close to the surface
- PA dependence allows to constrain geometry with the rotating vector model (RVM)

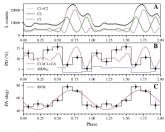
$$\tan(PA - \chi_p) = \frac{-\sin\theta \sin(\phi - \phi_0)}{\sin i_p \cos\theta - \cos i_p \sin\theta \cos(\phi - \phi_0)}$$

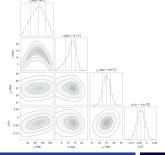
Observed targets by IXPE


■ X-Ray Pulsars:

- **Cen X-3** S. Tsygankov et al., ApJL 941, L14, 2022
- → Her X-1 V. Doroshenko, et al., Nature Astronomy 6, 1433, 2022
- → 4U 1626-67 H. Marshall, et al., ApJ 940, 70, 2022
- ▶ Vela X-1
 S. Forsblom, et al., ApJL 947, L20, 2023
- **GX 301-2** V. Suleimanov, et al., A&A 678, A119, 2023
- X Persei A. Mushtukov, et al., MNRAS 524, 2004, 2023
- GRO J1008-57 S. Tsygankov, et al., A&A 675, A48, 2023
- **EXO 2030+375** C. Malacaria, et al., A&A 675, A29, 2023
- **LS V** +44 17 V. Doroshenko, et al., A&A 677, A57, 2023
- → Her X-1 J. Heyl, et al., Nature Astronomy 8, 1047, 2024
- **SMC** X-1 S. Forsblom et al., A&A, 691, A216 2024
- **Swift J0243.6+6124** J. Poutanen et al., A&A, 691, 123, 2024
- **▶ PSR B1259–63** *P. Kaaret et al., ApJL, 974, 1, 2024*
- → 4U 1538-52 V. Loktev et al., A&A, 698, 22, 2025
- **→ 4U 1907+09** *M. Zhou et al., A&A, 700, 283, 2025*
- → 4U 1700-377 N. Kaito et al., PASJ, 77, 49, 2025
- **→ H 1417-624***M. Zhou et al., arXiv:2508.16417*
- Before IXPE no significant detection of polarization available

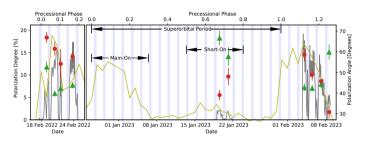
Hercules X-1

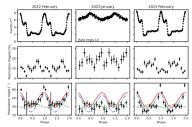

- V. Doroshenko, et al., Nature Astronomy 6, 1433, 2022
- Her X-1 is the second X-ray pulsar ever discovered
 - \Rightarrow spin period of $\sim 1.24 \,\mathrm{s}$
 - intermediate mass X-ray binary at a distance of \sim 7 kpc with nearly circular orbit
 - \rightarrow $P_{orb} \sim 1.7 \text{ d}$
 - having a surprisingly stable $\sim 35\,\mathrm{d}$ super-orbital variability
- IXPE observed Her X-1 on 2022 February 17–24
 - ⇒ at the beginning of the 35 d precession cycle
 - in the so-called "main-on" state.
- IXPE obtained the first highly significant detection of polarization signal from Her X-1:
 - \rightarrow PD = $(8.6 \pm 0.5)\%$
 - $PA = (62 \pm 2)^{\circ}$ (measured from north to east)



Hercules X-1: results

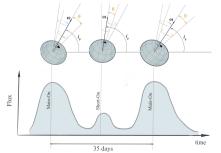
- IXPE detected for the first time polarization resolved in phase
 - ightharpoonup PD approach $\sim 15\%$ with phase dependence rather complex
 - PA shows simpler, roughly sinusoidal dependence
- PA dependence allows to costrain geometry with the rotating vector model (RVM):
 - magnetic obliquity (i.e. co-latitude of the magnetic pole): $\theta = (12.7^{-3.0}_{-4.4})^{\circ}$
 - \rightarrow inclination $i_p = (96^{+38}_{-41})^{\circ}$
 - ightharpoonup position angle $\chi_p = (56.9 \pm 1.6)^\circ$
 - \Rightarrow phase $\phi_0 = -2\pi(0.04 \pm 0.02)$
- PD significantly lower than the predicted 60–80% [Caiazzo & Heyl, MNRAS 501(2021)129]





Her X-1: observations along the superorbital period

J. Heyl, et al., Nature Astronomy 8, 1047, 2024

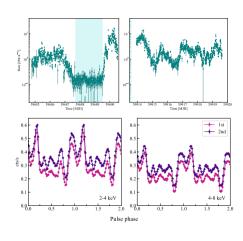


- IXPE observed Her X-1 along the superorbital period aiming to test precession models
 - First main-on: 2022 February 17–24
 - **➡** Short-on: 2023 January 18–21
 - ➤ Second main-on: 2023 February 3–8
- RVM analysis shows a variation in geometry along the different pointings

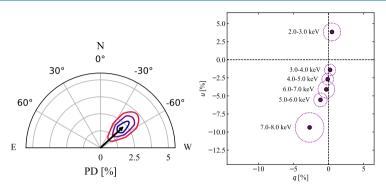
Her X-1: precession

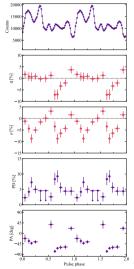
	Mean PD	$\chi_{ m p}$	θ	i_{p}	$\phi_0/2\pi$	Prec. Phase
	[%]	[deg]	[deg]	[deg]		
First Main-On	9.5 ± 0.5	55.4 ± 1.6	$14.5^{+3.0}_{-4.0}$	58^{+28}_{-22}	$0.19^{+0.03}_{-0.02}$	0.088
Early	8.6 ± 0.6	57.9 ± 2.1	$16.3_{-4.1}^{+3.5}$	64^{+25}_{-22}	$0.19^{+0.03}_{-0.02}$	0.073
Late	9.3 ± 0.7	52.2 ± 2.7	$15.9^{+3.6}_{-4.0}$	85_{-37}^{+35}	$0.22^{+0.05}_{-0.05}$	0.162
Short-On	17.8 ± 1.4	41.9 ± 2.2	$3.7^{+2.6}_{-1.9}$	90^{+30}_{-30}	$0.85^{+0.18}_{-0.20}$	0.687
Second Main-On	9.1 ± 0.5	46.8 ± 1.5	$16.0^{+3.1}_{-4.3}$	56^{+24}_{-20}	$0.20^{+0.02}_{-0.02}$	0.159

geometry variation compatible with precession

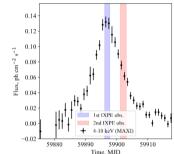

- uncertainty on the inclination is very large
- for the same superorbital phase the geometrical parameters are well in agreement
- Polarization degree always much smaller than expectations

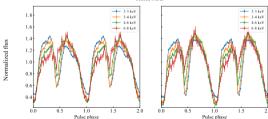
Vela X-1


S. V. Forsblum et al., ApJL 947, L20, 2023

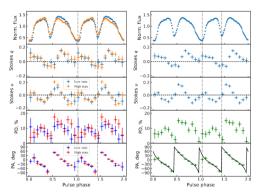

- Vela X-1 is one of the bright persistent XRPs and one of first the HMXB discovered
- Vela X-1 is a bright eclipsing source, displaying strong X-ray pulsations
 - ⇒ spin period 283 s
 - ⇒ orbital period 8.964 d
- IXPE observed Vela X-1 in the period April 15 –22 and November 30 December 6, 2022
 - eclipse period removed from the analysis

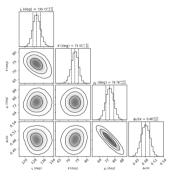
Vela X-1: energy resolved polarization


- IXPE detected PD and PA at $> 4\sigma$ CL.
 - \rightarrow PD = $(2.3 \pm 0.4)\%$
 - ightharpoonup PA = $-(47.3 \pm 5.4)^{\circ}$
- Evidence for polarization variation with energy
- Evidence for polarization variation with phase

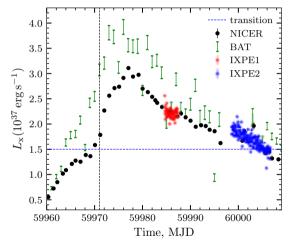

GRO J1008-57

S. Tsygankov et al., A&A 675, A48, 2023


- GRO J1008–57 is one of the most predictable and best-studied Be/XRPs
 - discovered in '93 by the BATSE instrument on board the Compton Gamma-Ray Observatory as a transient XRP
 - $ightharpoonup P_{\rm spin} = 93.587(5) \text{ s}$
- showing giant Type II and Type I (associated with the periastron passage) outbursts, related to the Be type of the optical companion (B1-B2 Ve star)
 - $ightharpoonup P_{orb} \sim 249.48(4) d$
- IXPE observations:
 - ⇒ 2022 Nov 13–14 and Nov 18–20

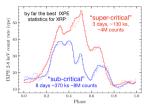


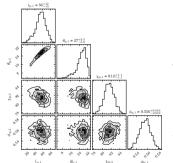
GRO J1008-57: Polarization spin-phase resolved

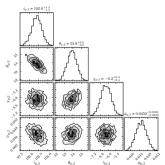


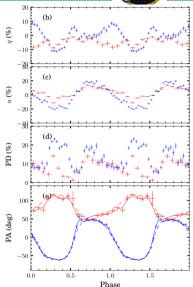
- GRO J1008–57: average polarization at $3.9\pm0.5\%$
- phase resolved polarization allows to obtain information on its geometry
 - ullet Magnetic obliquity $heta \simeq 73.5^\circ$ almost orthogonal rotator, different from Her X-1 and Cen X-3
 - ightharpoonup Pulsar rotation axis position angle $\chi \simeq 75^{\circ}$
 - \Rightarrow i_P $\sim 130^{\circ}$

LS V +44 17/RX J0440.9+4431

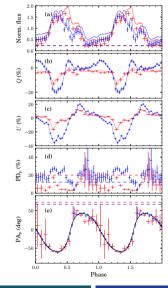

V. Doroshenko, et al., A&A 677, A57, 2023


- LS V +44 17/RX J0440.9+4431 is a BeXRB
 - discovered in 1997 by ROSAT
 - ightharpoonup pulsations period \sim 206 s
 - ightharpoonup orbital period ~ 150 d
 - system in which accretion continues during quiescence ($L\sim 10^{34}~{\rm erg/s}$) likely powered by a cold, non-ionized disk or wind.
- Active for the first time since 2010-11
- Giant (Type II) outburst in Jan 2023 $L\sim4\times10^{37}~erg/s$
- IXPE observed the source in two pointings of 130 ks and 373 ks

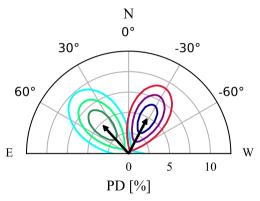

LS V +44 17: geometry



 Geometry is dramatically different between the two pointings

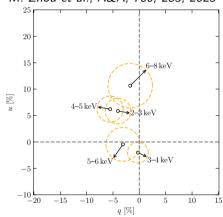


LS V +44 17: geometry variation?


- RVM reveals no significant variability of angles within either observation
 - ➤ Variation only between first and second pointing
- 90° change in χ can be due to the change of dominant polarization mode O/X upon super-sub critical transition but what about other angles?
- RVM QED angles defined by dipole field component is not working fine?
- crazy precession or complete re-arrangement of the magnetic field or emission region?
- Alternative idea:
 - Polarization having a constant component + a pulsed component following RVM model
 - ⇒ 10–40% of flux due to this component? where comes from?

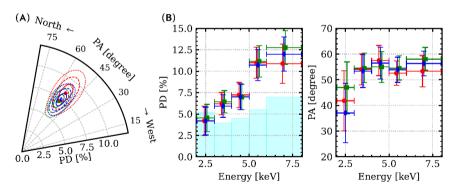
4U 1538-52 and 4U 1907+09

4U 1538-52

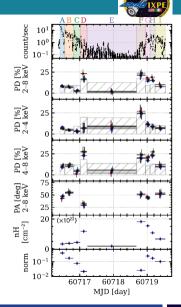

V. Loktev et al., A&A, 698, 22, 2025

2-3 keV (blue) vs 4-8 keV (red)

4U 1907+09

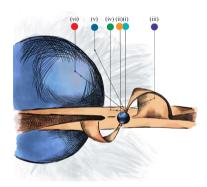

M. Zhou et al., A&A, 700, 283, 2025

4U 1700–377 polarization Pre- and Post-Eclipse I



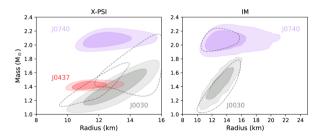
- 4U 1700-377 is a wind-fed HMXB
 - ightharpoonup orbital period 3.4 days with an eclipse duration of \sim 1.1 days
 - ightharpoons mass accretion $\dot{M} \sim 10^{-5} {
 m M}_{\odot} {
 m yr}^{-1}$
- Wind-fed HMXBs in eclipses expected to be polarized at ~20% [Kallman+ ApJ 815 (2015) 53]

4U 1700–377 polarization Pre- and Post-Eclipse II


- PD is energy dependent
- PD varies with time and increases just before and after the eclipse
- Scattering in the wind?
- Partial obscuration?
- Reflection on the companion and/or its wind?

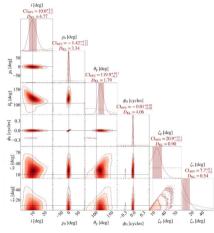
IXPE results on pulsars

- XRP show a measured PD below the theoretical expectations
- IXPE polarimetric observations provide previously unavailable information on these sources:
 - first phase resolved polarization properties
 - ➡ first direct costrain on their geometry
- A full interpretation of the observed polarization and a full assessment on the possible scenarios requires a deeper understanding of the accretion physics and the emission mechanisms in these objects
 - **►** Intrinsic polarization from the hotspot
 - Reflection from the NS surface
 - **▶** Reflection from the accretion curtain
 - Reflection from the accretion disk
 - **⇒** Scattering by the stellar wind
 - Reflection by the optical companion



Polarimetry of millisecond pulsars I

- lacksquare Simultaneous measurement of the mass M and the equatorial radius $R_{
 m eq}$ of NSs
 - ➡ paramount importance for constraining their equation of state
- Modeling the X-ray pulse profiles of MSPs depends on several geometrical and spectral parameters [See Lecture by A. Papitto]
- Rotational millisecond pulsars require Ms of NICER exposure time to achieve constrain



Chatziioannou et al., arXiv:2407.11153v1

Polarimetry of millisecond pulsars II

- Accreting millisecond pulsars (AMSPs) intriguing alternative given their **higher luminosity** with respect to rotating MSPs
- X-ray polarimetry might provide key information on geometrical parameters of the spots
- Soft photons from the NS surface are up-scattered by hot electrons in the accretion shock achieving PD from a few per cent up to 10–20%
- Several theoretical models and code to study polarization in AMSP were proposed/developed (Poutanen A&A 641, A166 (2020), Salmi et al., A&A 646, A23 (2021)2021, Di Marco et al., Proceedings IAU Symposium No. 363, 2023, Bovrikova et al., A&A 678, A99 (2023))

X-PSI now includes X-ray polarimetry [Salmi+, MNRAS 538 (2025) 2562]

Observed targets by IXPE

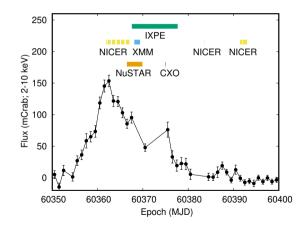
Accreting millisecond pulsar

- SRGA J144459.2-604207 A. Papitto et al., A&A, 694, 37, 2025
- SAXJ1808.4-3658

Transitional millisecond pulsar

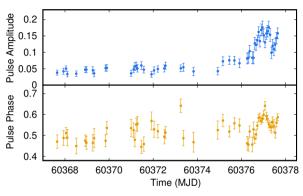
■ PSR J1023+0038 M. C. Baglio et al., ApJL 987, 19, 2025

Spider pulsar


■ PSR J1723–2837 M. Negro et al., arXiv:2509.05240

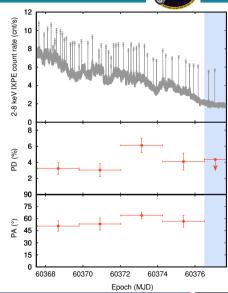
SRGA J144459.2-604207

A. Papitto et al., A&A, 694, 37, 2025


- Discovered in outburst on 2024 February 21 (ATel #16464) by Mikhail Pavlinsky
 ART-XC [Molkov arXiv:2404.19709]
 - relatively bright: 4–12 keV X-ray flux of $2 \times 10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}$
 - pulsations at 447.9 Hz, orbital period a5.2 h [Ng et al., ApJL 2024 968 L7]
 - ⇒ shows type-I X-ray bursts quite regularly (ATel #16475) with a recurrence time increasing from 1.6 to 2.2 h as the X-ray flux decreases
- First AMSP observed by IXPE in the context of a campaign which included also NICER, XMM-Newton and NuSTAR

SRGA J144459.2-604207: X-ray pulse timing


	IXPE
Interval (MJD)	60367.615–60377.619
$\phi(T_0)$	0.37(1)
$\nu(T_0)$ (Hz)	447.87156138(8)
\dot{v} (Hz s ⁻¹)	$< 3.0 \times 10^{-13}$
$a_1 \sin i/c$ (lt-s)	0.650486(13)
$P_{\rm orb}$ (s)	18803.665(4)
$T_{\rm asc}$ (MJD)	60361.641310(5)
e	$< 1.0 \times 10^{-4}$
χ^2 (d.o.f.)	121.3 (53)


- Starting by NICER ephemeris solution [Ng et al., ApJL 2024 968 L7] new ephemeris from IXPE data were obtained
- An increase of pulse amplitude is observed from 4% to 15% after MJD 60736.5

SRGA J144459.2-604207: Polarization as a function of time

- Burst are removed from the data
- 2–8 keV average polarization (significance $\sim 5.3\sigma$):
 - $\blacktriangleright \ \mathrm{PD} = 2.3\% \pm 0.4\%$ and $\mathrm{PA} = 59^{\circ} \pm 6^{\circ}$
- Between 2 and 3 keV and above 6 keV, no significant detection of PD
- In the 3–6 keV energy range PD is highly detetcted:
 - $ightharpoonup {
 m PD}_{3-6} = 4.0\% \pm 0.5\%$ and ${
 m PA}_{3-6} = 57^{\circ} \pm 3^{\circ}$
- No significant variations with time observed

Phase-resolved polarimetry before MJD 60376.5



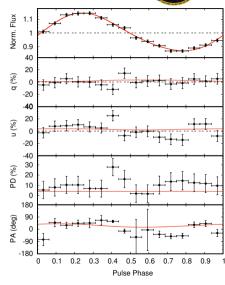
- Phase-resolved analysis in n = 16 phase bins in the 3–6 keV energy band
- Stokes parameters *Q* and *U* did not show significant variability, a fit with a constant function gave on 15 d.o.f.:

$$ightharpoonup q = Q/I = -1.6\% \pm 0.5\% \ (\chi^2 = 16.6)$$

$$\Rightarrow$$
 $u = U/I = 3.5\% \pm 0.4\% \ (\chi^2 = 15.6)$

- h set to -0.3 but reasonably good fit achievable for any value of h between 0 and -1
- Best-fit: $i = (74.1^{+5.8}_{-6.3})^{\circ}$, $\theta_1 = (11.8^{+2.5}_{-3.5})^{\circ}$, $\theta_2 = (172.6^{+2.0}_{-1.0})^{\circ}$, $\phi_0 = 0.57(4)$, $N = 6.90(6) \times 10^4$ cnt, $p_1 = 4.0\% \pm 2.0\%$, $\chi_{\rm p} = 57.2^{\circ} \pm 0.5^{\circ}$

Phase-resolved polarimetry after MJD 60376.5

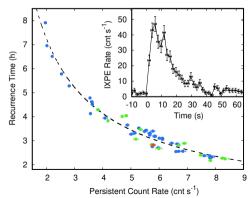


- Phase-resolved analysis in n = 16 phase bins in the 3–6 keV energy band
- Stokes parameters *Q* and *U* did not show significant variability, a fit with a constant function gave on 15 d.o.f.:

$$\Rightarrow$$
 $q = Q/I = 0.5\% \pm 1.4\% (\chi^2 = 10.2)$

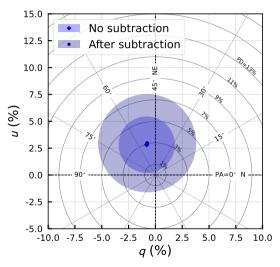
$$\Rightarrow u = U/I = 2.4\% \pm 2.7\% \ (\chi^2 = 18.7)$$

- The increase of the pulsed fraction (MJD 60376.5) to $A_1 = 18.7\% \pm 0.8\%$ can be qualitatively explained:
 - magnetic inclination of the two spots varies by $\delta \theta_1 \simeq -\delta \theta_2 \simeq 10^\circ$



Type-I X-ray bursts

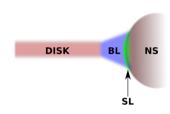
- During the observation IXPE detected 52 type-I X-ray bursts which shared similar properties
- Average peak count rate 38.7 cnt s⁻¹ with standard deviation 2.9 cnt s⁻¹
- Fluence very similar (649 cnt) and only slightly increased for bursts occurring when the persistent count rate had decreased below 3 cnt s⁻¹


- Stacking all the observed bursts and fitting the observed spectra with the sum of a thermal component and the two-component model used to fit the persistent spectrum we get $\langle kT_{\rm burst} \rangle = 1.83 \pm 0.05$ keV and $R_{\rm burst} = (6.2 \pm 0.2) d_8$ km
- Defining the burst duration as $\tau = \mathcal{F}/F_{\rm peak}$, and neglecting variations of the spectrum throughout the burst: $\tau = 16.8 \pm 1.6$ s

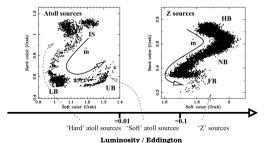
Polarization of Type-I X-ray bursts

- To search for a polarized signal during the X-ray bursts we stacked the emission observed during all the events retaining 32 s after the onset of each burst (total exposure 1664 s) after subtracting the contribution from persistent emission we measured:
 - \Rightarrow $\tilde{q}_{\rm b} = -0.7\% \pm 3.9\%$
 - $ightharpoonup ilde{u}_{
 m b} = 3.0\% \pm 3.9\%$
 - $ightharpoonup PD_{\rm UL} = 8.5\% (90\% \text{ c.l.})$

Conclusions

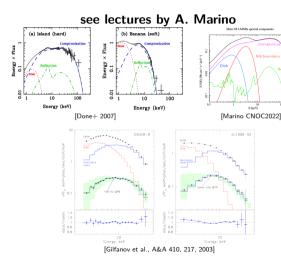


- IXPE observed for the first time an accreting millisecond pulsar obtaining a significant detection of polarization in 3–6 keV
- Phase resolved analysis allowed to obtain geometrical parameters, even if no strong variability on Q and U are observed
- 52 Type-I X-ray bursts have been detected obtaining an upper limit on the polarization of 8.5% at 90% CL
- Further studies are ongoing


Weakly magnetized NS in LMXB

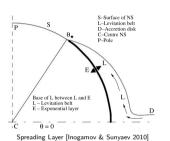
Weakly magnetized NS in LMXB

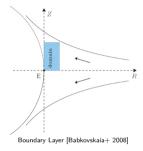
- \blacksquare Binary systems having a NS $(B < 10^{10}\,G)$ and a companion star $(M < M_{\odot})$
- Accreting matter via Roche lobe overflow (similar to BH)
- Classified in:
 - ightharpoonup **Z-sources** with luminosities 0.1–1 L_{Edd}
 - \rightarrow Atoll-sources with luminosities 0.01–0.1 L_{Edd}

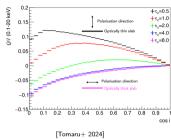


[Migliari & Fender 2006]

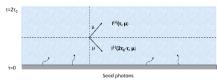
QPOs and spectra

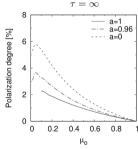



- Eastern model [Mitsuda et al., 1989]
 - ➡ Soft: accretion disk
 - ➡ Hard: Comptonization from BL
- Western model [White et al., 1988]
 - Soft: NS surface or BL
 - ➡ Hard: Comptonization from accretion disk
- Hybrid model [Lin et al., 2007]
- Presence of reflection
 - Allow to study inner disk radius and a new method to constrain FoS
- Energy-resolved Fourier spectra point towards the Eastern scenario
- Highly inclined ADC sources favor western/Birmingham model

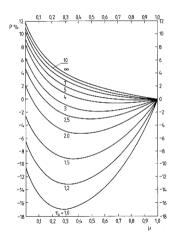


What polarimetry can do?

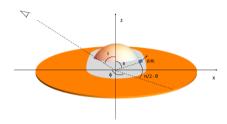



- Spectral models (Eastern/Western/Hybrid) can be degeneracy
- Timing support SL/BL as in Eastern scenario
- Sco X-1 marginal detection of polarization show a PA aligned with radio-jet direction
- Polarization can help to study "corona" geometry
 - → Accretion disk PA expected parallel to the disk (orthogonal to radio-jet)
 - ightharpoonup BL PA expected parallel or perpendicular to the disk depending on au

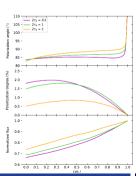
Polarization from each component I


- **Accretion disk** expected to have low polarization (< 6%) parallel to the disk
 - Chandrasekhar S. 1960, Radiative Transfer (New York: Dover)
 - ➡ Dovciak+ MNRAS 391 (2008) 32
 - Loktev+ A&A 660 (2022) 25

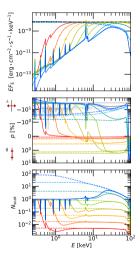
Polarization from each component II



- Boundary layer expected to have polarization <10% parallel to the disk if optically thick, while an optically thin slab can have higher polarization (up to $\sim18\%$) and it is expected to be orthogonal to the disk plane
 - Sunyaev & Titarchuk A&A 143 (1985) 374



Polarization from each component III


- **Spreading layer** (or vertically extended boundary layer) polarization up to 3% and polarization angle flipped by 90° with respect to boundary layer
 - ➤ Farinelli+ A&A 684 (2024) 62
 - ➡ Bobrikova+ A&A 696 (2025) 181

Polarization from each component IV

- Reflection component is polarized up to 20-30% with unpolarized fluorescence lines
 - → Matt MNRAS 260 (1993) 663
 - ➤ Poutanen+ MNRAS 283 (1996) 892
 - → Podgorny+ MNRAS 524 (2023) 3853
 - ➡ Podgorny A&A, 702, A43 (2025)
- Scattering in the wind can be polarized up to 20%
 - ➡ Tomaru+ MNRAS 527 (2024) 7047
 - ➤ Nitindala+ A&A 694 (2025) 230
- Accretion disk corona can be polarized up to 20%
 - **➡** Di Marco+ ApJL 979 (2025) 47
 - **→** Tomaru+ arXiv:2509.26147

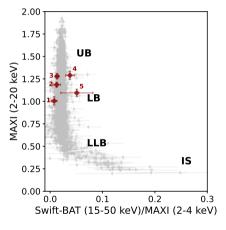
Observed targets by IXPE

Z-sources

- Cyg X-2 Farinelli, Fabiani, Poutanen, et al., MNRAS 519, 3681, 2023
- **GX 5**−1 *Fabiani, Capitanio, Iaria et al., A&A 684, A137, 2024*
- **GX 340+0 HB** La Monaca, Di Marco, Ludlam et al., A&A 691, A253, 2024
- **GX 340+0 NB** La Monaca, Di Marco, Coti Zelati et al., A&A 702 (2025) 101
- Sco X-1 La Monaca, Di Marco, Poutanen et al., ApJL 960, L11, 2024
- **GX 349+2** *La Monaca, Bobrikova, Poutanen* et al., A&A 702 (2025) 40

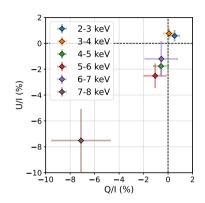
Atoll-sources

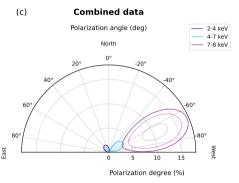
- **GS 1826–238** *F. Capitanio et al., ApJ 943,* 129, 2023
- **GX 9+9** *F. Ursini et al., A&A 676, A20, 2023*
- **4U 1820–303** A. Di Marco et al., ApJL 953, L22, 2023
- **4U 1624–49** *M. L. Saade et al., ApJ 963,* 133. 2024


Transients and peculiar sources

- **XTE J1701–462** *M. Cocchi et al., A&AL 674, L10, 2023*
- Cir X-1 J. Rankin et al., ApJL 961, L8, 2024
- **GX 13+1** A. Di Marco et al., ApJL 979, 47, 2025

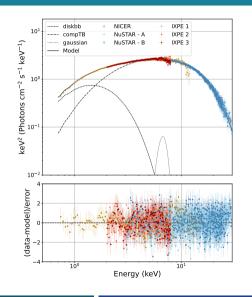
4U 1820-303


A. Di Marco, F. La Monaca, J. Poutanen et al., ApJL 953, L22, 2023



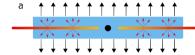
- LMXB consisting of a He WD accreting onto an ultracompact NS
- First identified source of type I X-ray bursts (bursts only around the flux minima)
- LMXB with the shorter orbital period (685 s)
- lacksquare Superorbital period of $\simeq 170$ days
- Previous tentative to measure of X-ray polarization
 - ightharpoonup PD < 4.7% at 2.6 keV and < 10.8% at 5.2 keV (99% CL) by OSO-8 ApJ 280(1984)255
- IXPE observed the source two times in the LB state

4U 1820–303: polarization as a function of the energy



- Polarization results to be energy dependant
- Energy bin 7–8 keV highly significant (99.99%CL)
- \blacksquare PA rotation of 90 deg at 96% CL at \simeq 4 keV

4U 1820-303: spectropolarimetric deconvolution



Polarimetric components		polconst*diskbb + polconst*comptb	polconst*diskbb + pollin*comptb	polconst*diskbb + polpow*comptb
diskbb	PD (%)	9.8±4.2	$8.1^{+7.1}_{-6.8}$	$3.2^{+3.0}_{-2.9}$
	PA (°)	32 ± 13	-59_{-26}^{+13}	43 ± 35
comptb	PD / A ₁ (%) ^a	5.31 ± 0.24	5.7 ± 2.4	$0.46^{+9.63}_{-0.46} \times 10^{-3}$
	$A_{ m slope}$ (% keV $^{-1}$)	-	-1.9 ± 0.6	_
	A_{index}	-	-	$-4.9^{+1.6}_{-2.6}$
	$PA / \psi_1 (deg)^a$	-63 ± 11	38 ± 7	-63 ± 7
	ψ_{slope} (deg keV $^{-1}$)	-	0 (f) ^b	-
	ψ_{index}	-	_	0 (f) ^b
	χ^2/dof	724/662 = 1.094	699/661=1.057	697/661=1.054

- soft disk component not well determined
- hard component due to boundary layer shows higher linear-dependent polarization
- \blacksquare the two components are rotated by 90°

4U1820-303: possible interpretations

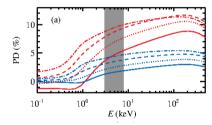
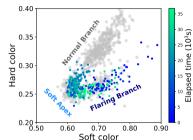
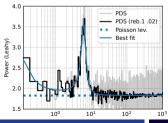
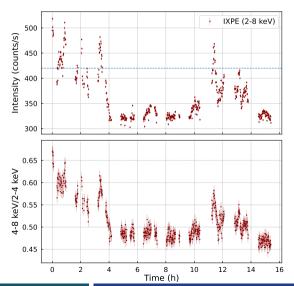


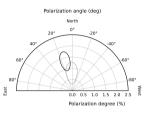
Figure: Blue (red) corresponding to inclination $30^{\circ}(60^{\circ})$ for different outflow velocities β_0 : 0 (solid), 0.2 (dotted), 0.4 (dashed), 0.6 (dotted-dashed).

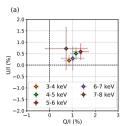

- From Poutanen et al., (ApJL 949:L10, 2023) a PD increase with energy is expected for slab geometry in the presence of relativistic outflows but inclination should be higher to explain the fast increase of PD
- Energy spectrum dominated by Comptonization as in the hard state, thus we can study corona properties
- PD increasing with energy is associated with a corona with slab geometry, where PD can reach 10%-20% for an optical thin corona, but in our case $\tau>10$ expected PD of few % some non-standard corona geometry required
- reflection component negligible (<5%) with respect to Comptonization (>90%) in the total flux
 - $\quad \ \ \, \mbox{Max PD for reflection} \simeq 30\% \rightarrow \mbox{cannot explain the results}$


Scorpius X-1

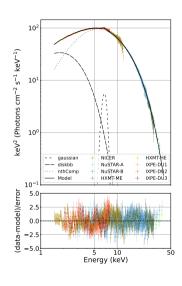
F. La Monaca, A. Di Marco, J. Poutanen, et al., ApJL 960, L11, 2024


- First X-ray extra-solar source discovered and the brightest in the X-ray sky
 - peak luminosity near the Eddington-limit
- First X-ray binary where radio emission was detected:
 - ▶ VLBI spatially resolved radio jet at position angle \sim 54 $^{\circ}$ [Fomalont et al., 2001]
- Previous attempts to measure X-ray polarization by OSO-8 [Long+ 1979] and PolarLight [Long+ 2022]
 - marginal detection
 - long exposure time without possibility to clearly distinguish the source state
- Observation campaign simultaneous with IXPE: Nicer, NuSTAR and insight-HXMT



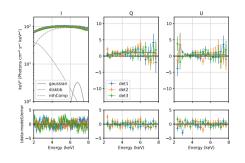


Sco X-1: Polarimetric results



- Polarization for flaring and non-flaring states compatible at 90% CL
- No evidence of PD or PA variation with energy
 - ▶ PD smaller than expectations: the geometry can be compatible with a sandwich corona geometry (Poutanen et al., ApJL 949:L10, 2023)

Sco X-1: spectro-polarimetric results

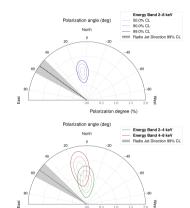


■ Spectral fit:

- ➡ clear broad Fe line at ~6.7 keV as a reflection feature modeled with a Gaussian line or with a complete reflection model relxiIINS
- **Highly significant polarization** in 2–8 keV energy band (PD=1.0%±0.2% and PA=8°±6°)
- Spectropolarimetric analysis for the model with Gaussian line:
 - **PD** of the disk < 3% compatible with expectations from (Chandrasekhar, 1960) for an inclination ∼44°
 - PD of the Comptonized component of $1.3\% \pm 0.4\%$, compatible with a coplanar BL/corona having $\tau_{\rm T}{\sim}7$ and $kT_{\rm e}{\sim}3$ keV [Sunyaev & Titarchuk, 1985]

Sco X-1: what about reflection?

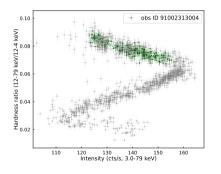
Spectropolarimetric analysis for model with Reflection:


- A clear polarimetric disentanglement of the three spectral components is not possible with the present data
- Fixing PD of the disk and Comptonized component, PD of the reflection component is about 14% compatible with predicted values (Matt+ 1993 and Poutanen+ 1996)

	Disk		Comptonization		Reflection	
Case A	< 1.9%	_	< 8.2%	_	< 66%	_
Case B	1.1%	-40°	0%	_	$14\% \pm 5\%$	$15^{\circ}\pm7^{\circ}$

Sco X-1: polarization angle VS radio-jet direction

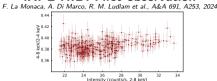
- Sco X-1 shows a PA rotated of ~46° with respect to the radio-jet position angle. In contrast:
 - previous OSO-8 and PolarLight observations
 - **▶** IXPE results for Cyg X-2 (Farinelli+ 2023)
- The PA variation/rotation may be due to relativistic precession or HR variations:
 - → relativistic precession: radio-jet observed in a few sources to change up to 36° on short timescales (Miller-Jones+ 2019), likely related to the relativistic Lense-Thirring precession of the accretion disk
 - ➡ Cir X-1 showed variations of the orientation of the radio jet over time, first time for an NS (Cowie+, in prep.)
 - variation of the corona geometry in the different states of the source with PA variations up to ~70°: Cir X-1 (Rankin+ 2023), GX 13+1 (Bobrikova+ 2024a,b; Di Marco et al., 2025), XTE J1701-462-80 (Di Marco, 2025)


[La Monaca, Astron. Nachr. e20240107, 2024,

La Monaca, arXiv:2504.07181]

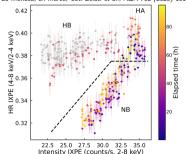
Polarization degree (%)

GX 340+0: a Cyg-like source

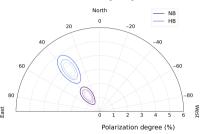


- Z source belonging to **Cyg-like sub-class**
- Inclination of the system:
 - expected intermediate inclination between Cyg-like and Sco-like systems
 - from the reflection modeling inclination $\sim 35^{\circ}$ (D'Aì et al., 2009; Miller et al., 2016; La Monaca et al. 2024; Li et al. 2025):
 - Seifina et al. (2013) proposed a model with a Comptonized corona that puffs up while the source changes state from HB through the NB to the FB, allowing to explain the dipping FB
- No spatially resolved radio-jet
- Spectral Joint fit NICER+IXPE+NuSTAR

GX 340+0: a Cyg-like source

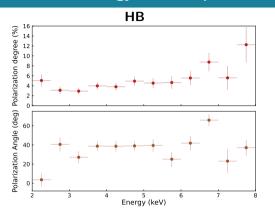


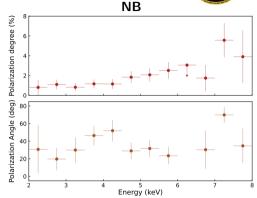
IXPE HID: First observation



IXPE HID: Second observation

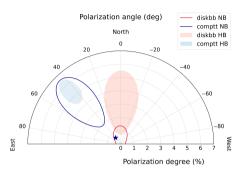
La Monaca, Di Marco, Coti Zelati et al., A&A 702 (2025) 101


Polarization angle (deg)



- GX 340+0 observed in the **HB** and in the **NB**
 - Polarization in the HB (\sim 11 σ CL): PD = 4.3% \pm 0.4% at PA = 36° \pm 3°
 - Polarization in the NB (\sim 5.6 σ CL): PD = 1.4% \pm 0.3% at PA = 37° \pm 5°
- PD of the HB is higher than NB in line with other IXPE results (XTE J1701–462, GX 5–1, GX 349+2)
- **■** Compatible PAs in the two branches

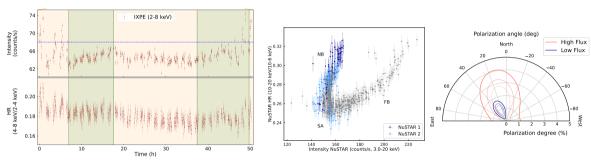
GX 340+0: energy-resolved polarization analysis



- lacktriangleq PD increasing with energy: up to $\sim 12\%$ in the HB and up to $\sim 6\%$ in the NB
- \blacksquare PA variation of ${\sim}40^{\circ}$ is observed between the soft and high energy bins in the HB; not observed in the NB
- Variation of polarization confirmed by spectropolarimetric analysis favouring XSPEC pollin or polpow model both in HB and NB

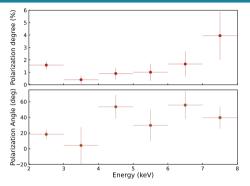
GX 340+0: spectropolarimetric analysis

[La Monaca, Di Marco, Coti Zelati et al., A&A in press, arXiv:2508.13278]


- Spectropolarimetric models with independent polarization for soft and Comptonized components with unpolarized Gaussian
- PD of the Comptonized emission from an optically thick and relatively narrow SL expected to be <0.6% (Bobrikova+ 2025)</p>

- Uncommon PA difference of \sim 40° between the two spectral components: misalignment of the disk/BL axis with the NS axis?
- PD of the Comptonised component remains constant at \sim 4% between the HB and the NB
- \blacksquare The high polarization from Comptonization requires inclination higher than 70°
- Reflection points to inclination ~37°
- Possible other explanation for the high PD:
 - Scattering of the source emission in the equatorial wind (Nitindala+ 2025); wind features observed (Miller+ 2016)
 - presence of an extended accretion disk corona (ADC), which may contribute as an additional component of polarized emission (Di Marco et al. 2025). XRISM observation favours this scenario (Ludlam+ 2025)

GX 349+2: a Sco-like source


La Monaca, Bobrikova, Poutanen et al., A&A 702 (2025) 40

- GX 349+2 was observed mainly in the NB (joint NuSTAR observation)
- Polarization results (\sim 4.2 σ): PD = 1.1 % \pm 0.3 % at PA = 29 ° \pm 7 °
- **PD** compatible with other sources observed in the NB (Cyg X-2, GX 5-1, XTE J1701-462, GX 340+0)
- No significant variability of polarisation in time and flux has been observed

GX 349+2: energy-resolved and spectropolarimetric analysis

Spectral component		GX 349+2	GX 340+0 NB	GX 340+0 HB
diskbb	PD (%)	1.0 ± 0.7	< 1.2	3.1 ± 1.7
	PA (°)	6^{+24}_{-23}	-	-1 ± 16
Comptonization	PD (%)	3.7 ± 3.0	4.3 ± 1.8	5.2 ± 1.0
_	PA (°)	68 ± 26	44 ± 13	44 ± 5

■ Gaussian assumed unpolarized

[F. La Monaca, A. Bobrikova, J. Poutanen et al., A&A in press, arXiv: 2507.07163]

- Complex variability for PD/PA with energy; similar trend for PD in GX 340+0
- Spectropolarimetric analysis confirmed the polarization variability with energy: XSPEC pollin model favored respect to a PD constant behaviour with energy
- PD of the Comptonized emission exceeds the theoretical predictions (Bobrikova+ 2025)
- Polarimetric results align more closely with the Cyg-like system GX 340+0 of similar inclination

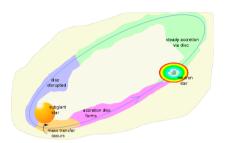
Polarization of the reflection component

Sco X-1

Component		Model C1	Model C2
diskbb	PD (%)	< 1.9	[1.1]
	PA (°)	_	[-40]
nthcomp	PD (%)	< 8.2	[0]
	PA (°)	14 ± 8	_
rellxillNS	PD (%)	< 66%	14 ± 5
	PA (°)		15 ± 7

GX 349+2

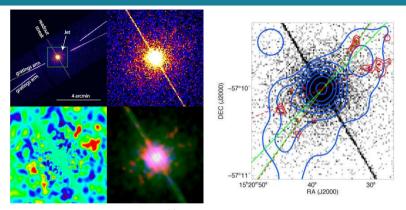
Component		Model B1	Model B2	Model B3
	DD (0/)		(1.0)	
diskbb	PD (%)	0.9 ± 0.7	[1.0]	[1.0]
	PA (°)	5^{+25}_{-23}	[6]	[6]
bbodyrad	PD (%)	< 4	[3.7]	[0]
	PA (°)	_	[68]	_
relxillNS	PD (%)	< 62	< 9	11 ± 5
	PA (°)	_	_	68^{+12}_{-13}


[F. La Monaca, A. Di Marco, J. Poutanen et al., ApJL 960, L11, 2024]

[F. La Monaca, A. Bobrikova, J. Poutanen et al., A&A in press, arXiv: 2507.07163]

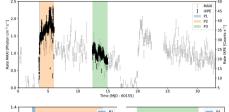
- Similar results for GX 340+0: PD of the reflection up to 30% depending on the assumption and showing that to constrain the PD of the reflection, PD of the Comptonized component has to be > 1%
- A clear polarimetric disentanglement of the three spectral components is not possible with the present data, confirming the degeneracy of the polarization of Comptonization and reflection
- PD of the reflection component compatible with predicted values (Matt 1993 and Poutanen+ 1996)

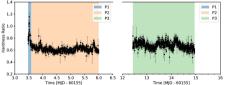
Circinus X-1



- Circinus X-1 is a peculiar weakly magnetized neutron star X-ray binary system
 - ➡ Discovery of Type I X-ray bursts proved that the compact object is a neutron star (Tennant+ 1986)
- Very young system (< 5000 yr, Heinz+ 2015) since the supernova explosion
- Historically went through both Z and atoll states (Schulz+ 2019)
- \blacksquare Accretion flow strongly related to its eccentric \sim 16.6 days orbit, during which its flux and spectrum change
- During periastron the disk is perturbed causing an X-ray outburst (Johnston+ 1999)

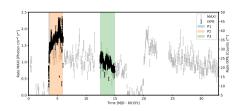
Jets in Circinus X-1

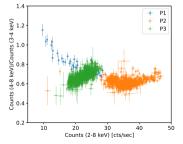

Heinz+ 2007


- Circinus X-1 shows X-ray jet in Chandra images
- Cir X-1 has also a detected radio jet
- The two jets in Heinz+ 2008 resulted to be almost aligned

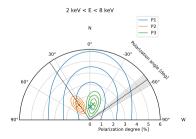
IXPE observations of Circinus X-1

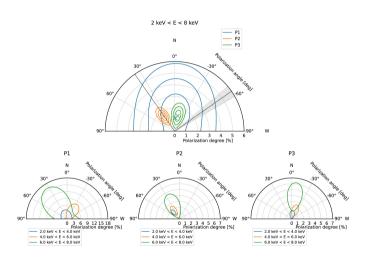
J. Rankin, F. La Monaca, A. Di Marco, et al., ApJL 961, L8, 2024





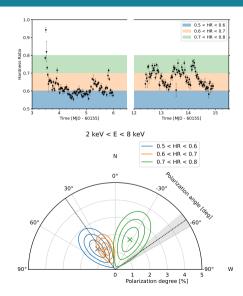
- IXPE observed Cir X-1 in two pointings for a total exposure time of 263 ks:
 - **→** 2023-08-02**-**04
 - **→** 2023-08-11-13
- IXPE first observation starts at the exit from the dip and covered the **flaring** phase
- IXPE second observation performed during the transition from the high to the low flux states covering the stable phase


Polarization of Circinus X-1 along the orbit



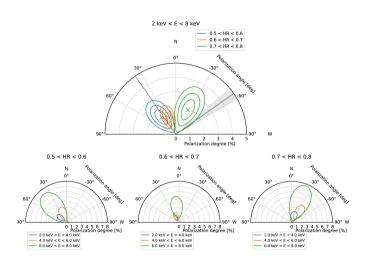
- IXPE data were divided into 3 phases of the orbital period
 - → P1: fast rise of the flux
 - ▶
 P2: flaring
 - ▶
 P3: stable
- Not significant detection of polarization in P1
- PD almost constant in P2 and P3, while PA changed

Polarization of Cir X-1 along the orbit: energy dependencies



- P1 not statistically significant
- P2 no visible energy trend and PA orthogonal to the radio-jet position angle in each energy bin
- P3 hint at 90% CL for energy increase of PD, while PA is almost constant

Polarization of Circinus X-1 at different HR



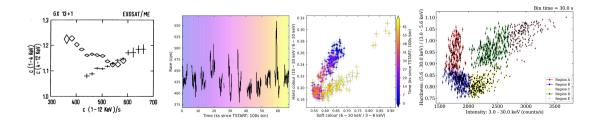
- IXPE data were divided into 3 HR bins
 - \rightarrow HR1: 0.5 < HR < 0.6 is the softer bin
 - ightharpoonup HR2: 0.6 < HR < 0.7 intermediate HR
 - \rightarrow HR3: 0.7 < HR < 0.8 harder bin
- This analysis is used to try to disentangle contribution due to different spectral components
 - → HR1: aligned ortogonally to the radio-jet
 - → HR3: approaching to the jet direction

Polarization of Cir X-1 at different HR: energy dependencies

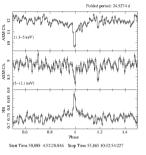


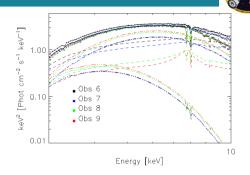
 No indication for energy dependencies in any HR bin

Circ X-1 results



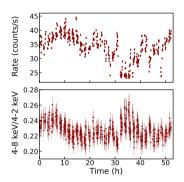
- Cir X-1 PA variation along orbit and HR
- Boundary layer dominant at high accretion rates (PA aligned with accretion disc)
- Spreading layer dominant at low accretion rates (PA parallel to rotation axis)
- Relativistic effects can cause rotations but not so large
 - misalignment of neutron star angular momentum and orbital axis
 - J. Rankin, F. La Monaca, A. Di Marco, et al., ApJL 961, L8, 2024

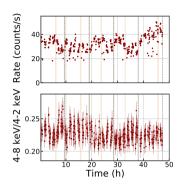

GX 13+1 I



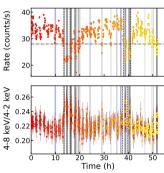
- Peculiar source, unique position between atolls and Z-sources:
 - ightharpoonup Bright as Z-source (up to 0.5 L_{edd}) and persistent radio emission
 - → CCD shape closer to atolls source
- 24.5 d periodic flux variation due to orbital movement (the longest between NS-LMXB) with almost regular short dips of \sim 1 ks (expected for high inclination)

GX 13+1 II

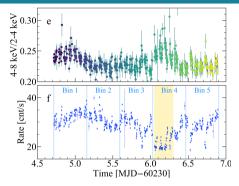


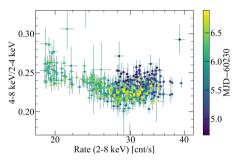

- Source showing dips (inclination $> 60^{\circ}$)
 - → A 24.5 d periodic dip is observed
- Complex spectrum (Díaz Trigo et al. 2012):
 - common continuum deconvolution
 - **⇒** reflection features
 - seven absorption features coming from the interaction of the radiation in the wind above the disk

GX 13+1: IXPE observations



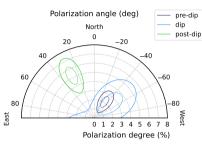
First observation performed in October 2023 (A. Bobrikova, S. Forsblom, A. Di Marco, et al., A&A 688, A170, 2024)

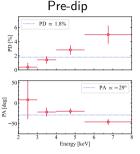

Second observation performed in February 2024 (A. Bobrikova, A. Di Marco, F. La Monaca et al., A&A, 688, A217, 2024)

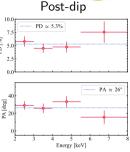


Third observation performed in April 2024 (A. Di Marco, F. La Monaca, A. Bobrikova, et al., ApJL, 979, L47, 2025)

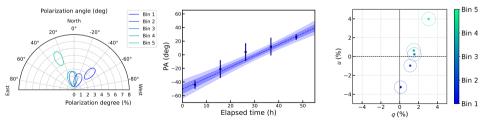
First observation





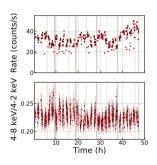

- First observation performed in October 2023 (A. Bobrikova, S. Forsblom, A. Di Marco, et al., A&A 688, A170 (2024))
- lacktriangle Exposure time: $\sim 100\,\mathrm{ks}$
- Measured a significant polarization
 - **→** PD=1.4% \pm 0.3%
 - \Rightarrow PA= $-2^{\circ} \pm 6^{\circ}$

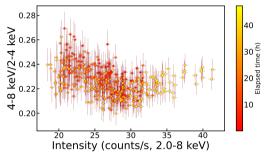
$\mathsf{GX}\ 13+1$: around the dip



- Study of different parts of the observation based on the light curve: pre-dip, dip, and post-dip
- Pre-dip and post-dip parts completely different behaviour:
 - ➤ PD pre-dip hint for energy dependence
 - PD post-dip almost constant with energy
 - ightharpoonup PA doesn't show significant energy dependency but is changed $\sim 60^\circ$ apart between pre-dip and post-dip
- dip polarization up to 7.5%(1.7%) with PA -51°(7°)

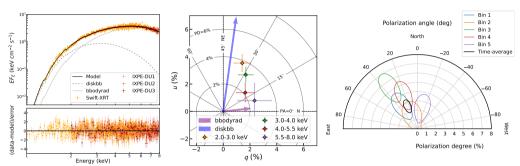
GX 13+1: time evolution


- We **split data into five equal time bins** (10.55 h each)
- rotation of the PA with time with a slope of 1°.64 per hour and the total rotation angle exceeding 70°
- The evolution of the source in the q-u plane shows a straight line
- PD is relatively high at the beginning and at the end of the observation



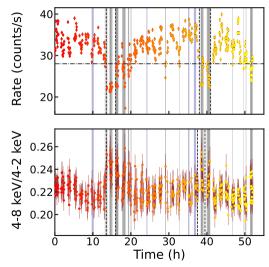
Possible contribution from wind/obscuration of the source?

GX 13+1: second observation I



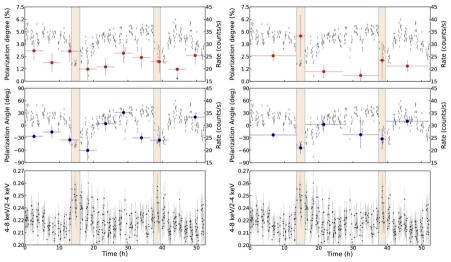
- Second observation performed in February 2024 (A. Bobrikova, A. Di Marco, F. La Monaca et al., A&A, 688, A217, 2024)
- lacktriangle Exposure time: \sim 90 ks covered with 10 Swift-XRT snapshots
- Measured a significant polarization
 - **⇒** PD= $2.6\% \pm 0.5\%$
 - \Rightarrow PA=23° \pm 5°

GX 13+1: second observation II

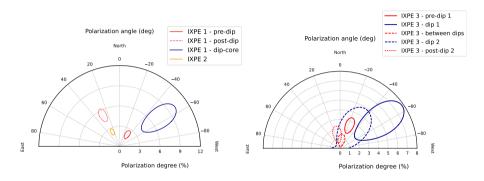


- Swift-XRT data allowed for a better spectral modelling and for spectropolarimetric analysis
- diskbb and bbodyrad polarization are not orthogonal
- Time variability of the PD, while PA is almost constant

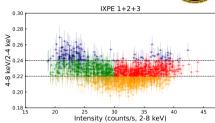
GX 13+1 third observation



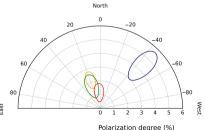
- Third observation performed in April 2024 (A. Di Marco, F. La Monaca, A. Bobrikova, et al., ApJL, 979, L47, 2025)
 - ightharpoonup Exposure time $\sim 100\,\mathrm{ks}$
 - ➡ Two dips during the observation
 - partial coverage by NICER
- Significant polarization detected
 - ightharpoonup PD=1.4% \pm 0.3%
 - PA=−11° ± 7°


GX 13+1 polarization vs time

GX 13+1 comparison of different observations

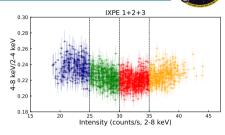


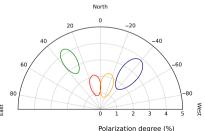
- Dips seems to show the same PA and higher PD
- Out of the dip PD smaller and PA changes


Polarization resolved in HR

IXPE

- 3 equally spaced HR bins
- \blacksquare softer bin and harder one show PA difference of $\sim 70^\circ$

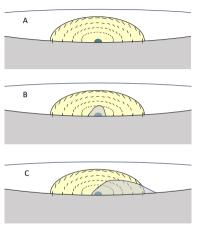

Polarization angle (deg)


olarization degree (%)

Polarization resolved in intensity

- 4 equally spaced intensity bins
- PA span on $\sim 70^\circ$ interval
- higher intensity approach the PA of the lower intensity bin

Polarization angle (deg)



Polarización degree (%)

Conclusions

- \sim 70° rotation during the first IXPE observation could be related to different obscuration of the different emitting regions
- \blacksquare Both HR resolved and intensity resolved polarization show PA variations spanning on ${\sim}70^{\circ}$
- During dips the central region (NS+BL/SL) is obscured
 - accretion disk corona polarization contribution increases
 - optical depth varying with time in the wind

[A. Di Marco, F. La Monaca, A. Bobrikova, et al., ApJL, 979, L47, 2025)]

IXPE results on WMNS

- Compatible PD results for Cyg-like and Sco-like sources
 - ➡ Polarization is not governed by the subclass to which the source belongs
- Polarization variation with the accretion flow
- Harder state (HB) appears to be highly polarised and probably dominated by emission from an ADC or wind
- Softer states (NB and FB) are probably dominated by disk and BL emissions
- Atolls have lower average polarization and polarization variation with energy

Cir X-1, Sco X-1 and GX 13+1 show a PA rotation with time/state of the source

Open questions:

- Shape and geometry of the region responsible for the strong Compton feature dominating the hard spectra
- Polarization correlation with the accretion rate?
- What is its role of the reflection in the total PD?
- Cyg X-2 PA aligned with Radio-jet, why not Sco X-1?

Since IXPE launch several papers on modeling Loktev+ 2022, Gnarini+ 2022, Poutanen+ 2023, Farinelli+ 2024, Tomaru+ 2024, Bobrikova+ in prep.

Conclusion

- IXPE is providing new amazing results and information not available before
- As Meszaros+ wrote in 1988:

 "A doubling of the observational parameter space from the present two (frequency and time) to four, however, is definitely feasible. It is possible to add the two extra dimensions provided by X-ray polarimetry, namely the direction and magnitude of polarization, to the previous two parameters. This would be currently, and for the near future, our most direct way of seeking a quantum leap in our understanding of the nature and structure of compact objects"

After 35 years, we are in the quantum leap! Next talk about IXPE results on April 3^{rd} by R. Ferrazzoli

