# REPORT OF THE (KQW)-FPT TECHNICAL WORKING GROUP

Helge Rottmann

Max-Planck-Institut für Radioastronomie



# FPT TECHNICAL WORKING GROUP



Workshop held in Bonn in 2022

"RADIO ASTRONOMY WITH MULTIBAND RECEIVERS AND FREQUENCY PHASE TRANSFER"

Great FPT work done by various groups already for a long time ...now FPT is turning global!

### **Science Working Group**

Report available: <u>arXiv:2306.04516</u> (Dodson et al. 2022)

### **Technical Working Group**

- Currently forming
- FPT-session during GMVA Technical Group (GTG) & EVN TOG joint meeting (Sep 2025)
- Interested persons/parties welcome to join (Email to Helge Rottmann, MPIfR)

# FPT TECHNICAL WORKING GROUP GOAL



Operational (!) goal:

## Make KQW-FPT a standard VLBI mode for global mm-VLBI

- Define FPT observing mode(s)
- Work towards technical readiness of array/stations/correlator

# FPT REASONING



Impact of troposphere on phase severe at high (mm/sub-mm) frequencies

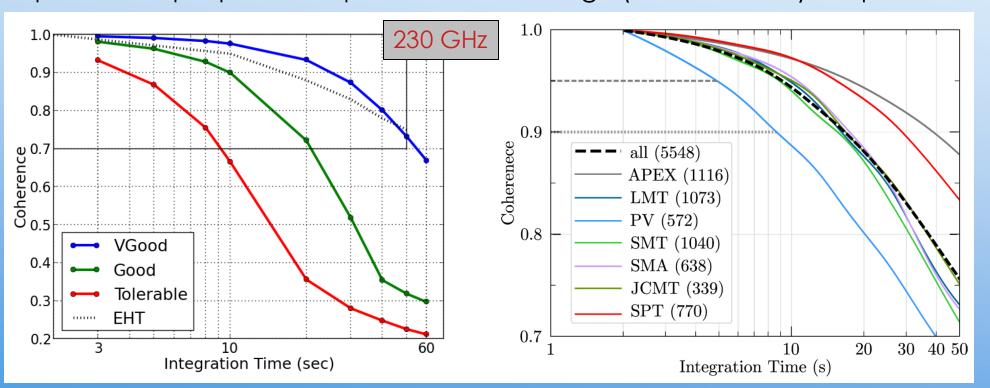



Figure from Rioja, Dodson, Asaki 2022 (https://doi.org/10.3390/galaxies11010016)

@230 GHz: even under **very good** conditions coherence times are < 1 min

# FPT ACTIVITIES IN THE MM/SUB-MM REGIME

In the mm/sum regime FPT is the most promising approach to significantly increase the sensitivity (order of magnitude)



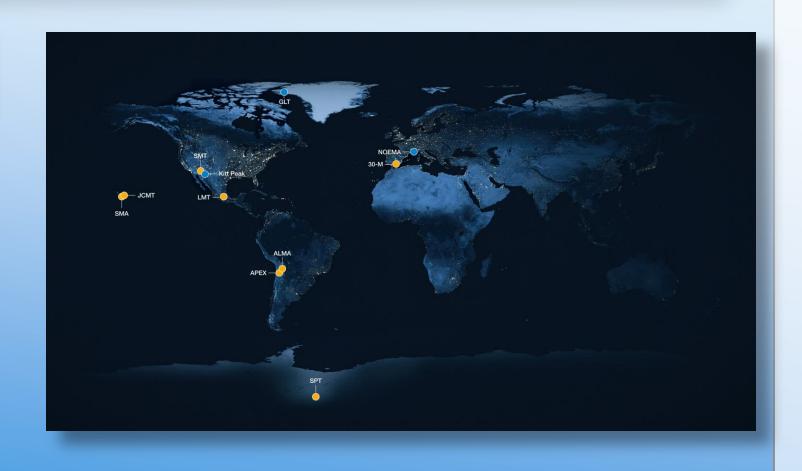
# FPT ACTIVITIES IN THE MM/SUB-MM REGIME



### **EHT**

230 GHz Up to 11 stations




### ngEHT (planned)

86, 230, 345 GHz FPT

Telescopes need to be equipped with multi-band receivers

### **FPT** activities

- Technical working group coordinated by S. Issaoun / D. Pesce (CfA)
- First tests carried out (86 => 230 GHz)



# FPT ACTIVITIES IN THE MM/SUB-MM REGIME

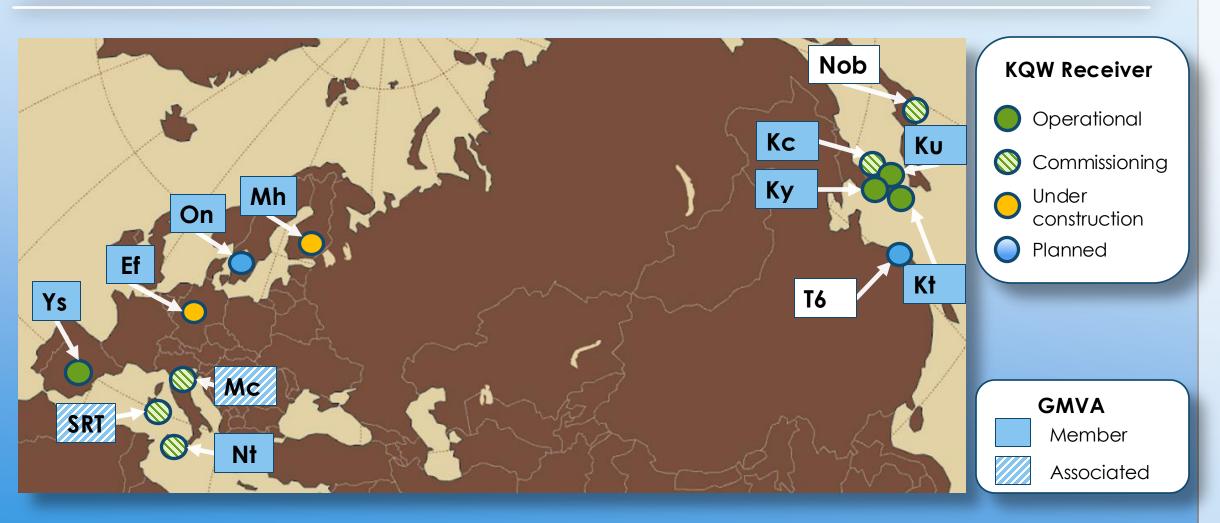


### **GMVA**



**86 GHz** & 43 GHz Up to 26 stations

Subset of telescopes are or will be equipped with KQW triple band receivers


### **FPT** activities

- Coordinated by MPIfR
- Technical Working Group forming



# KQW-RECEIVER ROADMAP





# KQW(D)-RECEIVER TIMELINE



Table 1. Status of existing, planned, and potential future multiband SOP receivers

| Antenna          | Receiver Band |              |              |              |             |
|------------------|---------------|--------------|--------------|--------------|-------------|
|                  | 22 GHz        | 43 GHz       | 86 GHz       | 129 GHz      | 230 GHz     |
| KVN: Yonsei      | in operation  | in operation | in operation | in operation | planned     |
| KVN: Ulsan       | in operation  | in operation | in operation | in operation |             |
| KVN: Tamna       | in operation  | in operation | in operation | in operation |             |
| KVN: Pyeongchang | in 2024/Q3    | in 2024/Q3   | in 2024/Q3   | in 2024/Q3   | in 2024/Q3  |
| Sejong           | in operation  | in operation | possible     |              |             |
| Yebes            | in operation  | in operation | in operation |              |             |
| ATCA*            | in operation  | in operation | in operation |              |             |
| Noto             | in 2023/Q4    | in 2023/Q4   | in 2023/Q4   |              |             |
| SRT              | in 2023/Q4    | in 2023/Q4   | in 2023/Q4   |              |             |
| Medicina         | in 2024/Q2    | in 2024/Q2   | in 2024/Q2   |              |             |
| Effelsberg       | in 2024/Q2    | in 2024/Q2   | in 2024/Q2   |              |             |
| Metsähovi        | In 2026/Q1    | In 2026/Q1   | In 2026/Q1   |              |             |
| Onsala           | design        | design       | design       |              |             |
| Tianma           | planned       | planned      | planned      |              |             |
| Nobeyama         | under tests   | under tests  | under tests  |              |             |
| Mopra            | planned       | planned      | planned      |              |             |
| Pico Veleta      | possible      | possible     | under tests  | possible     | under tests |
| NOEMA            | possible      | possible     | possible     | possible     | possible    |
| APEX             | possible      | possible     | possible     | possible     | possible    |
| Zelenchukskaya   | possible      | possible     | possible     |              |             |
| Badary           | possible      | possible     | possible     |              |             |

Partially commissioned in 2025

Commissioning expected to start in summer 2026

Partially commissioned Commissioning starts in fall 2025

Under construction; expected summer 2026

Under construction; expected 2026

Funding secured in Oct 2025

Table from Dodson et al. 2022 (arXiv:2306.04516)

 $<sup>^{\</sup>ast}$  - limited frequency range, operating in the paired-antenna mode, using single-band receivers.

# KQW-FPT TIMELINE



### Within 2026:

Likely up to 10 stations with working KQW systems

Europe: up to 5 stations (currently 1) Asia: up to 5 stations (currently 3)

### Test observations in 2026

- Goal: accommodate FPT tests within GMVA Session II (c262) in Sep. 2026
- Commissioning of European stations until summer 2026 crucial
- Feasibility to be continuously evaluated based on commission progress

# TECHNICAL TASKS



### Observing Strategy

- Ideally: Exact integer frequency multiples, e.g. 22/44/88 GHz
- Tuning capabilities at stations must be respected
- Avoid water vapor line at 22.24 GHz
- Band widths & polarizations

### Station Technical Readiness

- Backends must support number of used IFs (e.g. KQW, dual pol = 6 IFs)
- Recording speed must match the produced data rates (e.g. 12 Gbps)
- Sufficient recording volume must be available (local storage or disk modules)

### Correlator Technical Readiness

- Compute resources match increase in processing volume
- Available man power matches increase in correlation volume
- Sufficient storage volume must be available

# PROPOSED OBSERVING STRATEGY





- Recording data rate = 12 Gbps
- Data volume = 130 Tbyte / 24 hrs / station
- Backend IFs = 6

# **NEXT STEPS**



### Formalize Technical Working Group

- Mailing list
- Regular meetings

Assess technical capabilities of array, stations & correlator, e.g.

- Frequency capabilities (RX, tuning, band widths)
- Backend capabilities
- Recorder capabilities
- Storage capabilities (stations, correlator)
- Commissioning status of KQW receivers
- •

# **NEXT STEPS**



### Define standard mode for KQW-FPT observations with the GMVA

- Based on technical capabilities of array/stations/correlator
- Identify required technical upgrades at stations (e.g. backends, recorders)
- Coordinate upgrade procedure

### Organize test observations

- Based on technical readiness of the array
- Define scheduling strategy
- Provide feedback loop between technical / analyst people

# ADDITIONAL CHALLENGES



### **Source Structure**

- Strategies for source structure removal from phase calibration
- Large overlap with geodetic VLBI community

### **Proposal & Review**

- e.g. NRAO not involved in FPT observations
- KQW spans frequency boundaries of existing arrays

### Scheduling

- Sub-Arraying / Only subset of GMVA telescopes support FPT (separate FPT session ?)
- Find suitable sources and observing times with common visibility between Asia and Europe
- ...probably much more to think about



# Thank

you!