THE LIVING GALANY

Eugenio Mieli Andrea M. F. Valli Claudio Maccone

WINNERS AND LOSERS IN THE MILKY WAY

THE DRAKE PARAMETERS: THE LOGNORMAL SOLUTION FROM 7 TO 50 STEPS

THE PHASES AND THE CHALLENGES OF 50 STEPS

RESULTS AND CONCLUSIONS

 $N = N_s \cdot n_p \cdot f_s \cdot f_l \cdot f_i \cdot f_c \cdot f_L$

development phase duration sum

- N_s number of galaxy stars suitable for life (i.e., of spectral class K, G, and F)
- N_p number of planets per star in the habitable zone (of spectral class K, G, and F)
- f_{s} fraction of stable planets in the habitable zone (function of duration ΔT)
- fraction of suitable planets where life actually develops
- f_I fraction of planets inhabited by intelligent life
 f_c fraction of planets where intelligent life decides
 to communicate
- fraction of the planet's lifetime in which intelligent life persists compared to the duration of the last stellar population (**about 7 Gy**)

A phase
$$p_A = 1 \cdot (1 \cdot p_{A0})^n$$
 increasing with n
B challenge $p_B = (p_{B0})^n$ decreasing with n

1.10E-01 9.90E-02 8.80E-02 7.70E-02 6.60E-02 5.50E-02 4.40E-02 3.30E-02 2.20E-02 1.10E-02 $F_{c} = \exp(-\Delta TMAX/t) \times (\Delta TMAX/7Ga) - < YO>$

th Drake: lognormal distribution $oldsymbol{\Phi}\,$ of the fraction X $_{
m o}$ of the total

ASTRONOMICAL PARAMETERS 3°

0,80 Gy	0,80 Gy
0,10 Gy	0,90 Gy
1,60 Gy	2,50 Gy
0,50 Gy	3,00 Gy
0,50 Gy	3,50 Gy
0,50 Gy	4,00 Gy
0,50 Gy	4,50 Gy
0,05 Gy	4,55 Gy
0,40 Gy	4,95 Gy
	0,80 Gy 0,10 Gy 1,60 Gy 0,50 Gy 0,50 Gy 0,50 Gy 0,05 Gy 0,05 Gy

	planet age Gy)	number of planets hosting or having hosted life	distance (ly)	Total of Suitable planets	distance (ly)
A	0.90	710,000,000 planets where prokaryotes were born in the past	28	1,500,000,000	22
в		92,000,000 planets where prokaryotes are present today	55	190,000,000	43
с	3.00	81,000,000 planets where eukaryotes were born in the past	57	330,000,000	36
D		35,000,000 planets where eukaryotes are present today	76	140,000,000	48
E	4.00	35,000,000 planets where metazoans were born in the past	76	190,000,000	43
F		20,000,000 planets where metazoans are present today	91	110,000,000	52
G	4.50	470,000 planets where ETCs K1 static were born in the past	319	140,000,000	48
н		3 planets where ETCs K1 static are present today	16,515	92,000,000	48
I	4.95	2,200 current planets with ETCs K2 dynamics (eternal)	1,909	92,000,000	48

PART I - ASTRONOMICAL PARAMETERS

NUMBER OF GALAXY STARS SUITABLE FOR LIFE (OF SPECTRAL CLASS F, G, K)
 NUMBER OF SUITABLE PLANETS IN THE HABITABLE ZONE PER STAR (OF SPECTRAL CLASS F, G, K)

- **3** FRACTION OF STABLE PLANETS
- multiple star systems
- supernovae within 40 ly (light years)
- gamma-ray bursts within 5,000 ly (light years)
- super flares from their own star
- transit of gas giants on inner orbits
- prolonged meteor bombardment
- instability of the rotation axis
- absence of the carbon cycle
- absence of the planetary magnetic field

PART II - BIOLOGICAL PARAMETERS

- 4 FRACTION OF PLANETS WHERE LIFE ARISES
- the abiological synthesis of biological molecules
- the concentration of the primordial broth
- the formation of lipid bags
- the inclusion of chlorophyll in lipid membranes
- the "proton photopump"
- the formation of nucleic acid filaments
- the catalytic role of RNA
- determination of roles
- formation of the cell membrane
- emergence of the genetic code
- **5A** FRACTION OF PLANETS WHERE EUKARYOTES ARISE
- the evolution of an aerobic bacterium
- the host-symbiont encounter
- the formation of pores and the extrusion of extensions
- the "wrapping" of the symbionts and the disappearance of the cell wall of the host
- the "penetration of the symbionts into the cytoplasm"
- the migration of DNA from the genome of the symbiont to that of the host
- the acquisition of the eukaryotic cytoplasmic membrane
- the incorporation into a single coating and phagocytosis
- 5B FRACTION OF PLANETS IN WHICH ANIMALS (METZOI) WERE BORN
- the acquisition of a complex life cycle
- the aggregation of zoospores and the formation of the synzoospore
- the sedentary colony composed of differentiated cells
- the production of collagen
- 5C FRACTION OF PLANETS WHERE TECHNOLOGICAL CIVILIZATIONS (ETCs) ARE BORN
 - increase in metazoan size (nervous and vascular system)
 development of limbs
 conquest of the mainland

Tab. PART IV.4 - TOTAL Drake: the population of galactic life and the relative distances from us of both suitable planets and planets suitable and populated in the past and present: a average volume of the galactic disk of 1.53[.]10¹³ ly³ has been hypothesized (IJA 14/06/2023 Mieli, Valli, Maccone)

- a) In the galaxy, as a primitive K1 civilization (actually less than K1), we are almost alone, with about 3 ETC including us currently present.
- b) Approximately one civilization like ours forms every **20,000** years and has a slightly higher than **0.4%** chance of not going extinct (**1** in **250**).
- c) There are nearly half a million civilizations like these already extinct in the galaxy.
- d) Conversely, in the galaxy, if they overcame the seven challenges of the 7th parameter, there could be about **2,000** super-civilizations, K2 level or almost, which would form one every **5 million**

- differentiation of terrestrial animals
- acquisition of sociality
- upright stance and manual dexterity
- change in diet and brain growth
- organization of the brain for abstract thought
- birth of articulated language and technique

PART III - SOCIAL PARAMETERS

6 FRACTION OF PLANETS WHERE LIFE DECIDES TO COMMUNICATE7 FRACTION OF DURATION OF THE ETCs

- self-destruction due to evolutionary insufficiency
- unintentional technological error
- technological insufficiency to face planetary changes
- spontaneous involution
- artificial genetic transition ended on a dead track
- transition of artificial intelligence ended on a dead track
- reaching point Ω
- **7B** ETCs THAT OVERCOME THE 7 CHALLENGES AND BECOME ETERNAL

A - distribution of static civilizations with $\langle N \rangle = 3.41$ and $\sigma(N) = 2.43$

B - distribution of dynamic civilizations with <**N>=2,214** and **σ(N)=2,224**

years.

e) In this case, these super-civilizations would now be free to move between planetary systems and would likely be within about **50 light-years** from us (the distance of the first habitable planets used as intermediate travel stations). The organization and intentions of these super-civilizations are currently unknown to us and could be the subject of further study in our future work. The rest of the galaxy is a jungle of life forms at various stages of development (tens of millions of planets inhabited by living forms).

REFERENCES

This is a transposition of the paper published on 14 June 2023: Astrobiology: resolution of the statistical Drake equation by Maccone's lognormal method in 50 steps, International Journal of Astrobiology - Volume 22, Issue 4, August 2023, pp. 428 – 537 - DOI: https://doi.org/10.1017/S1473550423000113 (E. Mieli, A. M. F. Valli, Claudio Maccone). The paper was also published in book format by the Springer publishing house with the title, **The Living Galaxy** and **La Galassia Vivente**