Binary X-ray sources of Be-type: studying accretion extremes with the X-ray telescope XMM-Newton

Nicola La Palombara¹

L. Sidoli¹, S. Mereghetti¹, G.L. Israel², P. Esposito^{3,1}

¹INAF - IASF Milano, ²INAF - OA Roma, ³IUSS Pavia

LXVI Congresso SAIt 3 Giugno 2025 Firenze

- Systems composed of a neutron star (NS) orbiting a Be-type, fast rotating, massive star with a circumstellar decretion disk
- **Two types of BeXRBs** based on orbital characteristics and accretion behavior onto the NS (producing X-rays)

XMM-Newton

ESA's flagship X-ray observatory, launched on 10 December 1999

N. La Palombara – INAF

SAIt LXVI – 3 giugno 2025 - Firenze 3

INAF

N. La Palombara – INAF

5

INAF

AO24: 12 Ms of observing time available, 86.3 requested \Rightarrow over-subscription factor 7.2

N. La Palombara – INAF

INAF

Operations extended until December 2026, and indicatively until end of 2029

N. La Palombara – INAF

7

INAF

We investigated with XMM-Newton the two extremes of the BeXRBs

Persistent BeXRBs in the MW observed with *XMM-Newton*

X-ray source	$P_{spin}(s)$	L_{χ} (2-10 keV, x10 ³⁵ erg s ⁻¹)	Results in
X Persei	839.3	1.1	La Palombara & Mereghetti 2007
RX J0146.9+6121	1396.1	0.15	La Palombara & Mereghetti 2006
RX J1037.5-5647	853.4	0.11	La Palombara et al. 2009
RX J0440.9+4431	204.96	0.62	La Palombara et al. 2012
SXP 1062	1062	5.3	Hénault-Brunet et al. 2012
Swift J045106.8-694803	168.5	8.9	Bartlett, Coe, and Ho 2013
4U 0728-25	103.3	0.88	La Palombara et al. 2025

INAF

Persistent BeXRBs in the MW observed with *XMM-Newton*

N. La Palombara – INAF

Timing analysis

Common properties:

- Broad single-peaked pulse profile
- Low energy dependence of the pulse profile

RX J0440.9+4431

Phase

- single component models (power law or blackbody)
 ⇒ large residuals
- alternative emission models
 ⇒ rejected by data
- power law + blackbody model ⇒ good fit
- no evidence of Iron line
 ⇒ EQW Fe < 0.2 keV

N. La Palombara – INAF

X-ray source	kT _{BB} (keV)
X Persei	1.42(+0.04/-0.02)
RX J0146.9+6121	1.11(+0.07/-0.06)
RX J1037.5-5647	1.26(+0.16/-0.09)
RX J0440.9+4431	1.34 ± 0.04
SXP 1062	1.54 ± 0.16
Swift J045106.8-694803	1.8(+0.2/-0.3)
4U 0728-25	1.52 ± 0.06

• <u>high temperature</u> (kT > 1 keV)

X-ray source	kT _{BB} (keV)	$R_{BB}(m)$
X Persei	1.42(+0.04/-0.02)	361±3
RX J0146.9+6121	1.11(+0.07/-0.06)	140(+20/-10)
RX J1037.5-5647	1.26(+0.16/-0.09)	130(+10/-20)
RX J0440.9+4431	1.34 ± 0.04	270 ± 20
SXP 1062	1.54 ± 0.16	490 ± 50
Swift J045106.8-694803	1.8(+0.2/-0.3)	500 ± 200
4U 0728-25	1.52 ± 0.06	240(+30/-20)

- <u>high temperature</u> (kT > 1 keV)
- <u>small emission radius</u> (R < 0.5 km)

X-ray source	kT _{BB} (keV)	$R_{BB}(m)$	flux _{BB} /flux _{TOT} (%)
X Persei	1.42(+0.04/-0.02)	361±3	39
RX J0146.9+6121	1.11(+0.07/-0.06)	140(+20/-10)	24
RX J1037.5-5647	1.26(+0.16/-0.09)	130(+10/-20)	42
RX J0440.9+4431	1.34 ± 0.04	270 ± 20	35
SXP 1062	1.54 ± 0.16	490 ± 50	21
Swift J045106.8-694803	1.8(+0.2/-0.3)	500 ± 200	41
4U 0728-25	1.52 ± 0.06	240(+30/-20)	24

- <u>high temperature</u> (kT > 1 keV)
- <u>small emission radius</u> (R < 0.5 km)
- <u>high BB contribution</u> (20-40 % of the total flux)

X-ray source	kT _{BB} (keV)	R _{BB} (m)	flux _{BB} /flux _{TOT} (%)
X Persei	1.42(+0.04/-0.02)	361±3	39
RX J0146.9+6121	1.11(+0.07/-0.06)	140(+20/-10)	24
RX J1037.5-5647	1.26(+0.16/-0.09)	130(+10/-20)	42
RX J0440.9+4431	1.34 ± 0.04	270 ± 20	35
SXP 1062	1.54 ± 0.16	490 ± 50	21
Swift J045106.8-694803	1.8(+0.2/-0.3)	500 ± 200	41
4U 0728-25	1.52 ± 0.06	240(+30/-20)	24

- <u>high temperature</u> (kT > 1 keV)
- <u>small emission radius</u> (R < 0.5 km)
- <u>high BB contribution</u> (20-40 % of the total flux)

common property of persistent BeXRBs

ſ

Assuming $M_{NS} = 1.4 M_{SUN'} R_{NS} = 10^6 \text{ cm}$ and $B_{NS} = 10^{12} \text{ G}$, we can estimate:

- the accretion rate:
- the magnetic dipole momentum:
- the magnetospheric radius:
- the accretion column radius:

$$\begin{split} \dot{M} &= LR_{\rm NS} / (GM_{\rm NS}) \\ \mu &= B_{\rm NS} R_{\rm NS}^{3} / 2 \\ R_{\rm m} &= \{ \mu^4 / [2GM\dot{M}^2] \}^{1/7} \\ R_{\rm col} &\sim R_{\rm NS} (R_{\rm NS} / R_{\rm m})^{1/2} \end{split}$$

X-ray source	kT _{BB} (keV)	$R_{BB}(m)$	flux _{BB} /flux _{TOT} (%)	$R_{col}(m)$
X Persei	1.42(+0.04/-0.02)	361±3	39	330
RX J0146.9+6121	1.11(+0.07/-0.06)	140(+20/-10)	24	250
RX J1037.5-5647	1.26(+0.16/-0.09)	130(+10/-20)	42	240
RX J0440.9+4431	1.34 ± 0.04	270 ± 20	35	310
SXP 1062	1.54 ± 0.16	490 ± 50	21	420
Swift J045106.8-694803	1.8(+0.2/-0.3)	500 ± 200	41	450
4U 0728-25	1.52 ± 0.06	240(+30/-20)	24	340

X-ray source	kT _{BB} (keV)	$R_{BB}\left(m ight)$	flux _{BB} /flux _{TOT} (%)	$R_{col}(m)$
X Persei	1.42(+0.04/-0.02)	361 ± 3	39	330
RX J0146.9+6121	1.11(+0.07/-0.06)	140(+20/-10)	24	250
RX J1037.5-5647	1.26(+0.16/-0.09)	130(+10/-20)	42	240
RX J0440.9+4431	1.34 ± 0.04	270 ± 20	35	310
SXP 1062	1.54 ± 0.16	490 ± 50	21	420
Swift J045106.8-694803	1.8(+0.2/-0.3)	500 ± 200	41	450
4U 0728-25	1.52 ± 0.06	240(+30/-20)	24	340

↓

the observed thermal component is consistent with emission from the NS polar caps

Becker & Wolff, 2007: bulk and thermal Comptonization in a radiation dominated accretion column

BUT

$\begin{array}{c} \text{low luminosity} \\ (L_{\chi} < 10^{35} \text{ erg s}^{-1}) \\ \downarrow \end{array}$

- weak or absent shock
- BB component due to the <u>thermal mound</u> at the base of the accretion column
- pencil-beam emission rather than fan-beam

N. La Palombara – INAF

INAF

Transient BeXRBs in the SMC

Ideal site to investigate the *soft* spectral component at high luminosities:

- Several (> 100) sources
- $L_X \sim 10^{38} \text{ erg s}^{-1}$ in outburst
- $N_{\rm H} < 10^{21} \, {\rm cm}^{-2}$

- High count statistics at low energies
- Small uncertainties on the source distances \Rightarrow reliable estimate of L_X

Program of ToO observations with *XMM-Newton* performed between 2014 and 2017

4 sources observed in *outburst*:

X-ray source	$P_{spin}\left(s\right)$	L_{X} (0.2-10 keV, x10 ³⁷ erg s ⁻¹)	Results in
RX J0059.2-7138	2.76	7	Sidoli et al. 2015
SMC X-2	2.37	14	La Palombara et al. 2016
IGR J01572-7259	11.58	3.6	La Palombara et al. 2018
SXP 59	58.95	3.5	La Palombara et al. 2018

N. La Palombara – INAF

Transient BeXRBs

INAF

Transient BeXRBs in the SMC

N. La Palombara – INAF

Timing analysis

Common properties:

- Pulsed emission also at low energies (E < 1 keV)
- Significant energy dependence of the pulse profile
- Double-peaked pulse profile at high energies
- Pulsed fraction increasing with E

SXP 59: PF < 30 % @ E < 1 keV, > 60 % @ E > 4.5 keV

N. La Palombara – INAF

SXP 59

N. La Palombara – INAF

X-ray source	kT_{BB} (eV)
RX J0059.2-7138	93±5
SMC X-2	130(+20/-10)
IGR J01572-7259	220(+10/-20)
SXP 59	170 ± 10

• <u>low temperature</u> (kT < 0.2 keV)

X-ray source	kT_{BB} (eV)	R _{BB} (km)
RX J0059.2-7138	93±5	350(+80/-50)
SMC X-2	130(+20/-10)	320(+120/-90)
IGR J01572-7259	220(+10/-20)	50(+6/-5)
SXP 59	170 ± 10	110(+20/-10)

- <u>low temperature</u> (kT < 0.2 keV)
- <u>large emission radius</u> (R > 50 km)

X-ray source	kT_{BB} (eV)	R _{BB} (km)	flux _{BB} /flux _{TOT} (%)
RX J0059.2-7138	93±5	350(+80/-50)	1.7
SMC X-2	130(+20/-10)	320(+120/-90)	3.1
IGR J01572-7259	220(+10/-20)	50(+6/-5)	1.6
SXP 59	170 ± 10	110(+20/-10)	3.5

- <u>low temperature</u> (kT < 0.2 keV)
- <u>large emission radius</u> (R > 50 km)
- **<u>low BB contribution</u>** (< 4 % of the total flux)

X-ray source	kT_{BB} (eV)	R _{BB} (km)	flux _{BB} /flux _{TOT} (%)
RX J0059.2-7138	93±5	350(+80/-50)	1.7
SMC X-2	130(+20/-10)	320(+120/-90)	3.1
IGR J01572-7259	220(+10/-20)	50(+6/-5)	1.6
SXP 59	170 ± 10	110(+20/-10)	3.5

- <u>low temperature</u> (kT < 0.2 keV)
- <u>large emission radius</u> (R > 50 km)
- **<u>low BB contribution</u>** (< 4 % of the total flux)

↓ <u>common property of transient BeXRBs in ouburst</u>

Common properties of transient BeXRBs in outburst

- High luminosity: $L_{\rm X}$ = 10³⁷⁻³⁸ erg s⁻¹
- High pulsed fraction: *PF* > 30 %, increasing with energy
- Double-peaked pulse profile ⇒ fan-beam emission geometry?
- *Soft excess* which:
 - ✓ is faint: $L_{\rm SE}/L_{\rm PL}$ = 2-3 %
 - ✓ pulsates (from phase-resolved spectral analysis)
 - ✓ is dominated by a cold ($kT_{BB} \sim 0.1-0.2 \text{ keV}$) but large ($R_{BB} \sim 100 \text{ km}$) BB emission
 - ✓ d_{BB} (BB distance from central NS) ~ R_m (magnetospheric radius)

↓ reprocessing of the primary emission by the optically thick material at the inner edge of the accretion disc

Common properties of transient BeXRBs in outburst

- High luminosity: $L_{\rm X}$ = 10³⁷⁻³⁸ erg s⁻¹
- High pulsed fraction: *PF* > 30 %, increasing with energy
- Double-peaked pulse profile ⇒ fan-beam emission geometry?
- *Soft excess* which:
 - ✓ is faint: $L_{\rm SE}/L_{\rm PL}$ = 2-3 %
 - ✓ pulsates (from phase-resolved spectral analysis)
 - ✓ is dominated by a cold ($kT_{BB} \sim 0.1-0.2 \text{ keV}$) but large ($R_{BB} \sim 100 \text{ km}$) BB emission
 - ✓ d_{BB} (BB distance from central NS) ~ R_m (magnetospheric radius)

INAF

RGS spectral analysis

N. La Palombara – INAF

Common properties of transient BeXRBs in outburst

- High luminosity: $L_{\rm X}$ = 10³⁷⁻³⁸ erg s⁻¹
- High pulsed fraction: *PF* > 30 %, increasing with energy
- Double-peaked pulse profile ⇒ fan-beam emission geometry?
- *Soft excess* which:
 - includes narrow lines due to emission from photoionized plasma in regions above the disc

Conclusions

a <u>hot-BB excess</u> is a common feature of the <u>low-L & long-P</u> binary pulsars
a <u>soft excess</u> is a common feature of the <u>high-L & short-P</u> binary pulsars

N. La Palombara – INAF

SAIt LXVI – 3 giugno 2025 - Firenze 23

INAF

Thanks for your attention!

N. La Palombara – INAF

Back-up slides

N. La Palombara – INAF

Be binaries detected at VHE

Name	Star spectral type	P _{spin} (ms)	P _{orb}
PSR B1259-63	O9.5 Ve	48	1236.72 days
PSR J2032+4127	B0 Ve	143	50 years
LS I +61° 303	B0 Ve	270	26.49 days
HESS J0632+057	B0e	-	315.5 days

Be binaries detected at VHE

X Persei

SXP59.0: long-term evolution

 $P_{\rm spin}$ variation due to NS orbit $\cong 0.02$ s variability due to the pulsar spin-up and spin-down during the outburst and quiescence phases