

esa

E-

euclid

Giulia Despali University of Bologna

First results from the galaxy SL KP

KP Coordinators: GD, Tom Collett, Stefan Schuldt

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

- the shape of the image is heavily affected by the lensing
- small angular separation between the source and the lens position, i.e. almost aligned
- occurs in the central regions of galaxies and galaxy clusters where the density is super "critical"
- multiple images of background sources, such as bright QSO
- extended sources may be heavily distorted in gravitational arcs

galaxy-galaxy lensing

galaxy-galaxy lensing

Foreground lens galaxy: Luminous Red Galaxy z=0.444

galaxy-galaxy lensing

Foreground lens galaxy: Luminous Red Galaxy z=0.444

Background galaxy: blue star forming ~100M/yr z=2.38

galaxy-galaxy lensing

Foreground lens galaxy: Luminous Red Galaxy z=0.444

J1347

(Oldham+2017)

Background galaxy: blue star forming ~100M/yr z=2.38

galaxy-galaxy lensing

ESA/Treu/Schmidt Lensed quasars Foreground lens galaxy: Luminous Red Galaxy z=0.444

J1347

(Oldham+2017)

Background galaxy: blue star forming ~100M/yr z=2.38

SHARP Keck data (Kyatta et al. in prep.)

STRONG LENSING

galaxy-galaxy lensing

ESA/Treu/Schmidt Lensed quasars Foreground lens galaxy: Luminous Red Galaxy z=0.444

J1347

(Oldham+2017)

Background galaxy: blue star forming ~100M/yr z=2.38

SHARP Keck data (Kyatta et al. in prep.)

 $10^6 \, M_{sol}$

 $10^7 \, M_{sol}$

 $10^8 \, M_{sol}$

STRONG LENSING

galaxy-galaxy lensing

ESA/Treu/Schmidt Lensed quasars Foreground lens galaxy: Luminous Red Galaxy z=0.444

J1347

(Oldham+2017)

Background galaxy: blue star forming ~100M/yr z=2.38

KEY ASPECT: MASS MODELING

2. model the lens projected mass: ellipsoidal power-law +external shear +multipoles

(O'Riordan et al. 2024)

Bayesian codes

1. model the lens light (usually with a Serśič profile)

3. model the <u>subhalos</u>: analytical profiles (NFW, power-law)

KEY ASPECT: MASS MODELING

Cosine tern

Not applicable

(O'Riordan et al. 2024)

Bayesian codes

- 1. model the lens light (usually with a Serśič profile)
- 2. model the lens projected mass: ellipsoidal power-law +external shear +multipoles
- 3. model the <u>subhalos</u>: analytical profiles (NFW, power-law)

KEY ASPECT: MASS MODELING

(O'Riordan et al. 2024)

Bayesian codes

- 1. model the lens light (usually with a Serśič profile)
- 2. model the lens projected mass: ellipsoidal power-law +external shear +multipoles
- 3. model the <u>subhalos</u>: analytical profiles (NFW, power-law)

C. M. O'Riordan^{1,**}⁽⁰⁾, L. J. Oldham², A. Nersesian^{3,4}⁽⁰⁾, T. Li²⁽⁰⁾, T. E. Collett²⁽⁰⁾, D. Sluse³⁽⁰⁾, B. Altieri⁵⁽⁰⁾, B. Clément^{6,7}⁽⁰⁾, K. G. C. Vasan⁸⁽⁰⁾, S. Rhoades⁸⁽⁰⁾, Y. Chen⁸⁽⁰⁾, T. Jones⁸⁽⁰⁾, C. Adami⁹⁽⁰⁾, R. Gavazzi^{9,10}⁽⁰⁾, S. Vegetti¹⁽⁰⁾, D. M. Powell¹⁽⁰⁾, J. A. Acevedo Barroso⁶⁽⁰⁾, I. T. Andika^{11,1}⁽⁰⁾, R. Bhatawdekar⁵⁽⁰⁾, A. R. Cooray¹²⁽⁰⁾, G. Despali^{13,14,15}⁽⁰⁾, J. M. Diego¹⁶⁽⁰⁾, L. R. Ecker^{17,18}, A. Galan^{11,1}⁽⁰⁾, P. Gómez-Alvarez^{19,5}⁽⁰⁾, L. Leuzzi^{13,14}⁽⁰⁾, M. Meneghetti^{14,15}⁽⁰⁾, R. B. Metcalf^{13,14}⁽⁰⁾, M. Schirmer²⁰⁽⁰⁾, S. Serjeant²¹⁽⁰⁾, C. Tortora²²⁽⁰⁾, M. Vaccari^{23,24,25}⁽⁰⁾,

C. M. O'Riordan^{1,**}, L. J. Oldham², A. Nersesian^{3,4}, T. Li², T. E. Collett², D. Sluse³, B. Altieri⁵, B. Clément^{6,7}, K. G. C. Vasan⁸, S. Rhoades⁸, Y. Chen⁸, T. Jones⁸, C. Adami⁹, R. Gavazzi^{9,10},
S. Vegetti¹, D. M. Powell¹, J. A. Acevedo Barroso⁶, I. T. Andika^{11,1}, R. Bhatawdekar⁵, A. R. Cooray¹²,
G. Despali^{13,14,15}, J. M. Diego¹⁶, L. R. Ecker^{17,18}, A. Galan^{11,1}, P. Gómez-Alvarez^{19,5}, L. Leuzzi^{13,14},
M. Meneghetti^{14,15}, R. B. Metcalf^{13,14}, M. Schirmer²⁰, S. Serjeant²¹, C. Tortora²², M. Vaccari^{23,24,25},

- first Einstein ring discovered in Euclid
- z (lens) = 0.04, z (source) = 0.4
- extremely rare configuration

C. M. O'Riordan^{1,**}, L. J. Oldham², A. Nersesian^{3,4}, T. Li², T. E. Collett², D. Sluse³, B. Altieri⁵, B. Clément^{6,7}⁽⁰⁾, K. G. C. Vasan⁸⁽⁰⁾, S. Rhoades⁸⁽⁰⁾, Y. Chen⁸⁽⁰⁾, T. Jones⁸⁽⁰⁾, C. Adami⁹⁽⁰⁾, R. Gavazzi^{9,10}⁽⁰⁾, S. Vegetti¹⁽⁰⁾, D. M. Powell¹⁽⁰⁾, J. A. Acevedo Barroso⁶⁽⁰⁾, I. T. Andika^{11,1}⁽⁰⁾, R. Bhatawdekar⁵⁽⁰⁾, A. R. Cooray¹²⁽⁰⁾, G. Despali^{13,14,15}⁽⁰⁾, J. M. Diego¹⁶⁽⁰⁾, L. R. Ecker^{17,18}, A. Galan^{11,1}⁽⁰⁾, P. Gómez-Alvarez^{19,5}⁽⁰⁾, L. Leuzzi^{13,14}⁽⁰⁾, M. Meneghetti^{14,15}⁽⁰⁾, R. B. Metcalf^{13,14}⁽⁰⁾, M. Schirmer²⁰⁽⁰⁾, S. Serjeant²¹⁽⁰⁾, C. Tortora²²⁽⁰⁾, M. Vaccari^{23,24,25}⁽⁰⁾,

- first Einstein ring discovered in Euclid
- z (lens) = 0.04, z (source) = 0.4
- extremely rare configuration
- Euclid VIS + NISP
- Keck spectroscopy (KCWI) for the source redshift
- DESI data for velocity dispersion of the lens galaxy

C. M. O'Riordan^{1,**}, L. J. Oldham², A. Nersesian^{3,4}, T. Li², T. E. Collett², D. Sluse³, B. Altieri⁵, B. Clément^{6,7}⁽⁰⁾, K. G. C. Vasan⁸⁽⁰⁾, S. Rhoades⁸⁽⁰⁾, Y. Chen⁸⁽⁰⁾, T. Jones⁸⁽⁰⁾, C. Adami⁹⁽⁰⁾, R. Gavazzi^{9,10}⁽⁰⁾, S. Vegetti¹⁽⁶⁾, D. M. Powell¹⁽⁶⁾, J. A. Acevedo Barroso⁶⁽⁶⁾, I. T. Andika^{11,1}⁽⁶⁾, R. Bhatawdekar⁵⁽⁶⁾, A. R. Cooray¹²⁽⁶⁾, G. Despali^{13,14,15}⁽⁶⁾, J. M. Diego¹⁶⁽⁶⁾, L. R. Ecker^{17,18}, A. Galan^{11,1}⁽⁶⁾, P. Gómez-Alvarez^{19,5}⁽⁶⁾, L. Leuzzi^{13,14}⁽⁶⁾, M. Meneghetti^{14,15}⁽⁶⁾, R. B. Metcalf^{13,14}⁽⁶⁾, M. Schirmer²⁰⁽⁶⁾, S. Serjeant²¹⁽⁶⁾, C. Tortora²²⁽⁶⁾, M. Vaccari^{23,24,25}⁽⁶⁾

- first Einstein ring discovered in Euclid
- z (lens) = 0.04, z (source) = 0.4
- extremely rare configuration
- Euclid VIS + NISP
- Keck spectroscopy (KCWI) for the source redshift
- DESI data for velocity dispersion of the lens galaxy

individual "blobs" from GC had to be subtracted from the image

or modeled separately

C. M. O'Riordan^{1,**}, L. J. Oldham², A. Nersesian^{3,4}, T. Li², T. E. Collett², D. Sluse³, B. Altieri⁵, B. Clément^{6,7}, K. G. C. Vasan⁸, S. Rhoades⁸, Y. Chen⁸, T. Jones⁸, C. Adami⁹, R. Gavazzi^{9,10},
S. Vegetti¹, D. M. Powell¹, J. A. Acevedo Barroso⁶, I. T. Andika^{11,1}, R. Bhatawdekar⁵, A. R. Cooray¹²,
G. Despali^{13,14,15}, J. M. Diego¹⁶, L. R. Ecker^{17,18}, A. Galan^{11,1}, P. Gómez-Alvarez^{19,5}, L. Leuzzi^{13,14},
M. Meneghetti^{14,15}, R. B. Metcalf^{13,14}, M. Schirmer²⁰, S. Serjeant²¹, C. Tortora²², M. Vaccari^{23,24,25},

SLACS lenses (Bolton+06)

Spirals

Rings

1.

serie of 5 Q1 papers: " The Strong Lensing Discovery Engine "

A: Walmsley et al. "System overview and lens catalogue"
B: Rojas et al. "Early strong lens candidates from visual inspection of high velocity dispersion galaxies"
C: Lines et al. "Finding lenses with machine learning"
D: Li et al. "Double source plane lens candidates"
E: Holloway et al. "Ensemble classification of strong gravitational lenses: lessons for Data Release 1"

Initial selection of candidates:

bright sources in Q1 ($I_E \le 22.5 \text{ AB}$) detected in VIS removed artifacts 15" fov cut-outs

1086556 sources

Machine learning models: 5 networks applied to the candidates top 10-20k objects from each network passed to citizen science & expert inspection

Lens finding

Rank 1 - 10

Rank 10 - 100

Rank 100 - 1k

Rank 1k - 10k

Rank 10k - 100k

Rank 100k - 500k

https://www.zooniverse.org/projects/mikewalmsley/galaxy-judges/classify

Galaxy-galaxy lensing in Euclid

Result: ~500 new lenses,

Galaxy-galaxy lensing in Euclid

Result: ~500 new lenses,

Galaxy-galaxy lensing in Euclid

Result: ~500 new lenses

Lenses automatically modeled with **PyAutoLens**

developed by James Nightingale (Newcastle) integrated in the Euclid Pipeline

Result: ~500 new lenses,

Galaxy-galaxy lensing in Euclid

Result: ~500 new lenses,

Galaxy-galaxy lensing in Euclid

- Galaxy mass profile (second ring)
- Cosmography (different redshift plane)

A lens system with multiple source galaxies at different redshifts (with multiple Einstein rings with different Einstein radius)

U3 (z=3.51?) s2 (z~2.4) s3 (z=5.975) -4

A lens system with multiple source galaxies at different redshifts (with multiple Einstein rings with different Einstein radius)

D: Li et al. "Double source plane lens candidates"

Result: 4 new candidates

We will discover more than 1000 DSPLs in DR3

edge-on galaxies as lenses

Ecker et al in prep.

"The clone"

new SHARP lens (in prep)

DETECT DARK MATTER SUBSTRUCTURES

J0946 - Vegetti+2010

B1938 - Vegetti+2012

Euclid ----- HST

EUCL J033101.78-285247.7

Mock HST data F606W, 3 orbits

EUCL J033414.91-280046.4

EUCL J040400.60-460704.9

EUCL J175049.89+665454.5

.

DETECT DARK MATTER SUBSTRUCTURES

EUCL J033748.41-275140.7

EUCL J041122.98-455546.6

EUCL J181607.88+681651.1

forecast: >1 detection per lens

O'Riordan et al in prep.

Proposals and accepted programmes - Spectroscopy

Please add date with mm.yyyy and add the proposal PDF to the title column. If your proposal is eventually not accepted, please remove it from the list. The contact person should be aware of the targets observed and/or to be observed.

	Telescope/Instr.	PI	contact person email	observing period	# hours	# targets	Status	Submission/Acceptance date	Proposal	KP	Notes
1	GTC/Osiris+	Acebron	ana.acebron@unican.es	2025B- 2027A	270	135	pending	04.2025	CELESTE: A gtC spEctroscopic Legacy programme of Euclid STrong lEnses	KP1	
2	SALT RSS	Serjeant	stephen.serjeant@open.ac.uk	2025 – 1	2.6	1 or 2 from D Euclid SLDE paper D	Guaranteed time	04/2025	UKSC GTO request	KP1	
3	Palomar/NGPS	Stern	daniel.k.stern@jpl.nasa.gov	2025B	5/n	40	Pending	04.2025	Euclid Strong Lenses and Distant Quasars	KP1	
4	VLT x-shooter	Tian	tian.li@port.ac.yk	2024	2	1 DSPL	finished	10.2024	DSPL	KP1	
5	HET LRS2	Ecker	ecker@usm.lmu.de	2025	10	11	Guaranteed time	04.2025		KP1	
6	LBT	Ecker	ecker@usm.lmu.de	2025	12	6	Guaranteed time	04.2025		KP1	
6	VLT X-shooter	Ecker	ecker@usm.lmu.de	2025	56	24	pending	04.2025	https://euclid.roe.ac.uk/attachments/150262	KP1	
7	VLT MUSE+FORS2	Bergamini	pietro.bergamini@unimi.it	2025	12 MUSE + 8 FORS2	2 clusters from 🗗 Q1 paper	pending	03.2025	https://euclid.roe.ac.uk/attachments/150324	KP4	
8	OHP/MISTRAL	R. Gavazzi	raphael.gavazzi@lam.fr	2025		4	EXECUTED	03.2025		KP4	No detections (low S/N, poor sensitivity)
9	Gemini GMOS	H. Srivastava	hsrivast@student.ubc.ca	2025A	3.18	1	Guaranteed time	05.2025	Spectroscopic follow-up of a bright double source-plane lens discovered by Euclid	KP1	

Proposals and accepted programmes - Photometry

Please add date with mm.yyyy and add the proposal PDF to the title column. If your proposal is eventually not accepted, please remove it from the list. The contact person should be aware of the targets observed and/or to be observed.

	Telescope/Instrument	PI	contact person email	observing period	# hours	# targets	Status	Submission/Acceptance date	Proposal	КР
1	HST WFC3/UVIS	O'Riordan	conor@mpa- garching.mpg.de	Cycle 33	24 orbits	8	Submitted	10.04.2025	Detecting low-mass dark matter haloes in a Euclid- selected sample of strong lenses	KP1
2	HST	Ryczanowski								
3	HST	Li								

Several ML network have now been improved & are being integrated in the Euclid Pipeline to run automatically

We will run a new citizen science project to help confirm the best lens candidates

Many science applications in progress

Towards DR1

euclid