

Lesson learned from Q1-CMBX and prospects for DR1

Giulio Fabbian (CNRS - IAS Orsay, CMBX SWG co-lead)

on behalf of CMBX and CMBX-Q1 team

L. Legrand, M. Lembo, R. Kou, L. Pagano, G. Piccirilli, N. Tessore, W. Hartley, S. Gouyou-Beauchamps and others

Q1 CMBX: goals and approach

- **Goal 1**: assess the quality of state-of-the-art data processing in Q1
 - No data other than Q1 products used.
 - Focus on photometric sample (though spectroscopic can be similarly tested).
- **Goal 2**: Showcase analysis for KP-CMBX-2 (and KP-CMBX-3):
 - 2x2pt w/ CMB lensing + photometric galaxy clustering.
 - Pipeline / approach validation end-to-end towards DR1 analysis.
- **Approach**: cross-correlation with CMB probes is less prone to systematics
 - Provide reasonable quality tests without compromising on robustness.
 - Multiple strategy to assess robustness (e.g. variation wrt to CMB data, null tests...)
- Focus on CMB lensing but other probes available (kSZ, tSZ...)

INAF

Why do we care?

• Different probes means different scales at different redshift...

• Need to assess if any new physics is real or effects of non-linear physics.

Footprints and sky areas

Analysis approach

- Our baseline sample selection (~MAGLIM)
 - Quality cuts MUMAX_MINUS_MAG<-2.6 + detection quality flag
 - Cut at z<2.5 to avoid degeneracy area in PHZ estimation
 - Multiple photo-z estimates for tomography (1,3,6 bins)...
- Pipeline relying on state of the art CMBX analyses
 - Project galaxies on the sky and compute overdensity.
 - Compute C_ℓ with mask deconvolution and Gaussian covariance.

- Check consistency with Planck cosmology and maybe push to cosmology if possible
 - Linear bias and magnification bias from <u>SPV3</u>
 - Non-linear bias fitted on Flagship $\{b_1(z), b_2(z)\} + \{b_{s^2}, b_{3nl}\}$ set to co-evolution relations.
 - Compare results on different patches and stability

Sample selection

- We investigated several samples selected based on classification purity
 - p_{gal} > 0.90 (~11 gal/arcmin²)
 - $p_{star} < 0.05$ (~20 gal/arcmin²)
- DES MAGLIM ~0.12 gal/arcmin² on 4000 deg²
- Classification varies by field given difference in available photometry
 - PanSTARR vs DES...
- Classification coupled to PHZ quality:
 - Systematics from EXT....

Selection function tests

- No full VMPZ full selection function.
 - HOWEVER Euclid is very uniform.
- VMPZ coverage mask as 0-th order selection function:
 - No major effects ℓ <2000 !

Consistency across footprints (Euclid alone)

NO differences across footprints • identified prior to purity cuts

ITO NAZIONA

- Potential FOV effects at $\ell \sim 500$
- Similar situation when applying purity • cuts (p_{gal}, p_{star}).

Internal null / consistency tests

- Everything works!
 - Jackknives null tests
 - Swap field null tests
 - Null lensing map cross-correlation
 - CMB lensing maps internal consistency

. . .

Flagship-2 comparison

OR ASTROPHYSICS

Agenzia Spaziale Italiana

- No tomography (galaxies z<2.5 in FS2, no PHZ estimates effects)
- Divide octant in Q1-like patch and compute mean and std as estimate of true expected covariance.
- C_{ℓ}^{gg} applying no cuts always consistent with FS2 predictions (χ^2 test)

Towards a tomographic analysis

- Cut on purity highly correlates with PHZ quality / depth
- High-z tail removed by galaxy classification selection.
- Problem: inhomogeneous data/PHZ quality...

Agenzia Spaziale Italiana

Redshift estimates vs FS2 + Phosphorus

FS2-DR1 = solid, Q1 = dashed $p_{qal} > 0.00$

ISTITUTO NAZIONALE DI ASTROFISICA

NATIONAL INSTITUTE

FOR ASTROPHYSICS

Clustering 3 bins vs FS2+Phosphorus

- Quite coherent with expectations from FS2 including PHZ processing
 - Full classifier not ran for simplicity, Difficult to assess specificities of sample...
- PHZ PDF model quite well neighboring bins but further bins are more tricky

ATIONAL INSTITUTE

OR ASTROPHYSIC

Some technical points

How to use VMPZ templates...

• Linear systematics deprojection using VMPZ masks

INAF

STITUTO NAZIONAL

JATIONAL INSTITUTE

FOR ASTROPHYSICS

Systematics deprojection results on power spectra

- Only exposure on NISP shifts points >2 σ , No other template seems to matter!
- CMB Cross correlation totally insensitive!

NATIONAL INSTITUTE

FOR ASTROPHYSICS

Single bin consistency

WARNING: no theory line is a fit!

p_{gal} > 0.90 – systematics deprojected

South Fornax North

NATIONAL INSTITUTE

FOR ASTROPHYSICS

p_{star} < 0.05 – systematics deprojected

South Fornax North

NATIONAL INSTITUTE

FOR ASTROPHYSICS

South $-p_{gal} > 0.90$ vs $p_{star} < 0.05$

South –
$$p_{gal}$$
 > 0.90 ACT vs Planck

- We need to (and will!) capitalize on the power of new CMB ground based experiments
 - SPT MoU done, SO ongoing...

FOR ASTROPHYSICS

Agenzia Spaziale Italiana

Three bins Consistency

WARNING: no theory line is a fit!

South $-p_{gal} > 0.90$ vs $p_{star} < 0.05$

p_{gal} > 0.90 – systematic deprojected

= 100 - 1500

NATIONAL INSTITUTE

Towards a preliminary cosmological analysis

Investigating the robustness of the bias model

- Fixing the cosmology allows us to self-calibrate the bias model
 - · Good data fit for all EDFs (but only with broad-bin tomography)
 - 1 amplitude parameter retrieves good fit agreeing with model at <2-3 σ with 2.5% error!
 - We will have to fight for bias modeling accuracy / scale cuts !

Consistency tests on cosmological parameters

The power of CMB cross-correlation in practice

- Unaffected by scale cuts / z errors...
- 6 bins tomography all EDFs achievable with denser sample!
- We can combine all EDFS where auto-correlation is limited!

	p _{gal} >0.90		p _{star} <0.05		
Field	z bins	PTE	S/N	PTE	S/N
South	1	0.470	6.2	0.541	6.7
	3	0.935	7.5	0.802	8.2
	6	0.713	10.1	0.385	10.4
Fornax	1	0.778	3.3	0.653	3.7
	3	0.999	4.4	0.988	4.9
	6	0.978	7.7	0.941	7.7
North	1	0.049	4.6	0.087	5.1
	3	0.370	6.3	0.489	6.9
	6	0.704	8.3	0.567	9.4

- A full 2x2pt cosmological analysis : South p_{gal} > 0.90
- Only 2-3x worse than CMB constraints with caveats!

Conclusions and prospects for DR1

• It will be hard (but Q1 gave me hope) !

- Systematics related to external data are potentially important and need multiple mitigation strategy
- PHZ estimates seem consistent with expectation with "coarse binning": 6 bins problematic.
- Sample selection is tricky but Q1 "golden" sample has already 100x more galaxy density than DES.

• CMB lensing Cross-correlation crucial additional complementarity

- Can already do tomography with 6 bins across all 3 fields with SNR~20 for 20gal/am2!
- For Q1 tomography could be achieved for 3 bins with SNR \sim 30 combined.
- Allows to recover data for cosmology the more we are systematics limited!
- More cool data for Euclid to use from SPT and SO on their way!
- It's a multidisciplinary team effort: a unique Euclid strength!
 - Cross-teams / communities / OUs / SWGs expertise needed

INAF