DESI results (Data Release 2)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Davide Bianchi Università degli Studi di Milano

> Euclid Italia Bologna CNR 01/07/2025

DES

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

DESI survey

Five target classes

40 million redshifts

in 5 years

3 million QSOs z > 2.1 Lya Tracers 0.9 < z < 2.1

16 million ELGs 0.6 < z < 1.6

8 million LRGs 0.4 < z < 1.0

13.5 million **Brightest galaxies** 0.0 < z < 0.4

DESI (2021-2026)

Spectra

SPECTROSCOPIC INSTRUMENT

DARK ENERGY

U.S. Department of Energy Office of Science

DESI instrument

DESI by the Numbers

- DESI is a Fiber-fed multi-• object spectrograph. It uses robotic control to position optical fibers onto the location of a known galaxy
- 5000 fiber positioner robots ٠ on the focal plane
- 8 sq. deg. FOV ٠
- Ten 3-channel • spectrographs
- Spectra of 35 million galaxies and quasars over 14,000 deg² in five years

SPECTROSCOPIC INSTRUMENT

DARK ENERGY

U.S. Department of Energy Office of Science

DESI instrument

DESI by the Numbers

- DESI is a Fiber-fed multi-• object spectrograph. It uses robotic control to position optical fibers onto the location of a known galaxy
- 5000 fiber positioner robots • on the focal plane
- 8 sq. deg. FOV ٠
- Ten 3-channel • spectrographs
- Spectra of 35 million galaxies and quasars over 14,000 deg² in five years

SPECTROSCOPIC INSTRUMENT

DARK ENERGY

U.S. Department of Energy Office of Science

DESI instrument

DESI by the Numbers

- DESI is a Fiber-fed multi-• object spectrograph. It uses robotic control to position optical fibers onto the location of a known galaxy
- 5000 fiber positioner robots • on the focal plane
- 8 sq. deg. FOV ٠
- Ten 3-channel . spectrographs
- Spectra of 35 million galaxies and quasars over 14,000 deg² in five years

U.S. Department of Energy Office of Science

Missing observation: inverse-probability weights

DESI DR1 mocks

Bianchi D. et al. 2025

Data release 2 (DR2)

Data release 2 (DR2) sky coverage

Data release 2 (DR2) sky coverage

R.A. [deg]

U.S. Department of Energy Office of Science

Redshift distribution

Baryon acoustic oscillations (BAO)

Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

Baryon Acoustic Oscillations (BAO)

$D_{M}(z)$ and $D_{H}(z)$ encode the expansion history of the Universe

U.S. Department of Energy Office of Science

Baryon Acoustic Oscillations (BAO)

$D_{M}(z)$ and $D_{H}(z)$ encode the expansion history of the Universe

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

BAO scaling parameters

2 different compressions for the BAO information

2 different compressions for the BAO information

BAO scaling parameters

2 different compressions for the BAO information

BAO scaling parameters

2 different compressions for the BAO information

BAO scaling parameters

U.S. Department of Energy Office of Science

Cosmological results

U.S. Department of Energy Office of Science

DESI DR2 blinding

BAO measurements were kept blinded during validation process

Galaxies: catalog-level blinding that modifies redshifts and weights

Lya forest: data-vector blinding that shifts BAO peak

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

Overall size

U.S. Department of Energy Office of Science

DESI DR2 BAO results vs Planck

Cosmological parameters (ACDM)

U.S. Department of Energy Office of Science

0.34

 $\Omega_{\rm m}$ 0.30

U.S. Department of Energy Office of Science

0.34

DESI + BBN $H_0 = 68.51 \pm 0.58 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $\Omega_{\rm m}$ 0.30

U.S. Department of Energy Office of Science

0.34

DESI + BBN $H_0 = 68.51 \pm 0.58 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $\Omega_{\rm m}$ 0.30

DESI + θ_* + **BBN** $H_0 = 68.45 \pm 0.47 \text{ km s}^{-1} \text{ Mpc}^{-1}$

U.S. Department of Energy Office of Science

0.34

DESI + BBN $H_0 = 68.51 \pm 0.58 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $\Omega_{\rm m}$ 0.30

DESI + θ_* + **BBN** $H_0 = 68.45 \pm 0.47 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Time-dependent dark energy (DESI alone)

Dark energy eq. of state $w = p / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Time-dependent dark energy (DESI alone)

Dark energy eq. of state $w = p / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

(DESI + CMB)

Dark energy eq. of state $W = p / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Time-dependent dark energy

(DESI + CMB)

Dark energy eq. of state $W = \rho / (\rho c^2)$

CPL parametrisation $W(a) = W_0 + W_a (1 - a)$

Levels of tension with ΛCDM DESI BAO + CMB: 2.5 σ in DR1 \rightarrow 3.1 σ in DR2

Time-dependent dark energy

Dark energy eq. of state $W = \rho / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Dark energy eq. of state $W = \rho / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Dark energy eq. of state $W = \rho / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Dark energy eq. of state $W = \rho / (\rho c^2)$

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Time-dependent dark energy (phantom crossing)

Phantom crossing could indicate more complex dark sector than traditionally assumed

Max dark energy density at $z \approx 0.45$ (phantom crossing)

U.S. Department of Energy Office of Science

Time-dependent dark energy (what drives it?)

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Time-dependent dark energy (what drives it?)

Each individual dataset (BAO, CMB, SNe) is still compatible with Λ CDM, but the corresponding Ω_m values are inconsistent

ACDM does not provide a good fit to all data simultaneously

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Time-dependent dark energy (what drives it?)

Each individual dataset (BAO, CMB, SNe) is still compatible with Λ CDM, but the corresponding Ω_m values are inconsistent

ACDM does not provide a good fit to all data simultaneously

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Time-dependent dark energy (what drives it?)

Each individual dataset (BAO, CMB, SNe) is still compatible with Λ CDM, but the corresponding Ω_m values are inconsistent

ACDM does not provide a good fit to all data simultaneously

wCDM model: constant eq. of state but not necessarily equal to -1

wCDM does not have enough freedom in the expansion history to fit BAO, CMB, and SNe simultaneously

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Time-dependent dark energy (what drives it?)

Each individual dataset (BAO, CMB, SNe) is still compatible with Λ CDM, but the corresponding Ω_m values are inconsistent

ACDM does not provide a good fit to all data simultaneously

wCDM model: constant eq. of state but not necessarily equal to -1

wCDM does not have enough freedom in the expansion history to fit BAO, CMB, and SNe simultaneously

*w*₀*w*_aCDM has sufficient flexibility to simultaneously achieve good fits to all 3 datasets

Resolves the mismatch in Ω_m between DESI and CMB

Time-dependent dark energy (early- vs late-time probes)

Time-dependent dark energy (early- vs late-time probes)

Time-dependent dark energy (early- vs late-time probes)

Time-dependent dark energy (CPL param. vs binned eq. of state)

CPL parametrisation $w(a) = w_0 + w_a (1 - a)$

Binned reconstruction of w(z) without assuming a functional form for the eq. of state

Consistent with our *w*₀*w*_aCDM results

Neutrino mass (ACDM)

Massive neutrinos influence the angular diameter distance to last scattering but so do other cosmological parameters

Neutrino mass (ACDM)

Massive neutrinos influence the angular diameter distance to last scattering but so do other cosmological parameters

DESI BAO help breaking these degeneracies

Neutrino mass (ACDM)

Massive neutrinos influence the angular diameter distance to last scattering but so do other cosmological parameters

DESI BAO help breaking these degeneracies

U.S. Department of Energy Office of Science

Neutrino mass (wowaCDM)

Assuming Λ CDM: $\Sigma m_v = 0.0642 \text{ eV}$

U.S. Department of Energy Office of Science

Neutrino mass (wowaCDM)

Assuming ΛCDM : $\Sigma m_v = 0.0642 \text{ eV}$

Assuming wowaCDM:

$\Sigma m_v = 0.163 \text{ eV}$

Summary

- Discrepant results between DESI+BBN and CMB in the Ω_m - H_0 plane within ACDM. In addition, DESI is in tension with the Ω_m values measured with SNe, which are larger than that preferred by CMB.
- Assuming ACDM, DESI + CMB yield the tightest constraints on the sum of neutrino masses, in increasing tension with lower bounds from terrestrial oscillation experiments
- These points hint at growing incompatibility between different datasets when interpreted using the ΛCDM model
- With DR2 BAO the evidence for evolving dark energy has increased to 3.1σ from DESI+CMB alone, and to between 2.8σ and 4.2σ when including SNe. This additional freedom reconciles the discrepancies between dataset mentioned above

What can Euclid add to the picture?

Pivot redshift for w_0w_a around z = 0.5, out of Euclid clustering range, but:

- At current stage no dataset alone can constrain w₀w_a, signal comes from combination of different probes at different redshifts
- Good balance of complementarity-overlap with DESI, useful to identify systematics
- Weak lensing provides independent information
- w_0w_a is a placeholder, we don't know yet the correct interpretation. If new physics, fingerprints could be found somewhere else, e.g. at the perturbation level

U.S. Department of Energy Office of Science

Extra slides

Ω_m comparison under ΛCDM

Mild to moderate discrepancy between DESI and SNe

Might indicate that DESI and SNe can be fitted together only with models with greater freedom in background evolution

Ω_m comparison under ΛCDM

Mild to moderate discrepancy between DESI and SNe

Might indicate that DESI and SNe can be fitted together only with models with greater freedom in background evolution

Parallel - perpendicular

Model/Dataset	$\Omega_{ m m}$	$H_0 \; [{ m km \; s^{-1} \; Mpc^{-1}}] \; \; 10^3 \Omega_{ m K}$		$w ext{ or } w_0$	w_a
ΛCDM					
CMB	0.3169 ± 0.0065	67.14 ± 0.47			
DESI	0.2975 ± 0.0086				
DESI+BBN	0.2977 ± 0.0086	68.51 ± 0.58			
$DESI+BBN+\theta_*$	0.2967 ± 0.0045	68.45 ± 0.47			
DESI+CMB	0.3027 ± 0.0036	68.17 ± 0.28			
$\Lambda \mathrm{CDM} + \Omega_{\mathrm{K}}$					
CMB	$0.354\substack{+0.020\\-0.023}$	63.3 ± 2.1	$-10.7\substack{+6.4 \\ -5.3}$		
DESI	0.293 ± 0.012		25 ± 41		
DESI+CMB	0.3034 ± 0.0037	68.50 ± 0.33	2.3 ± 1.1		

U.S. Department of Energy Office of Science

Model/Dataset	$\Omega_{ m m}$	$H_0 \; [{ m km \; s^{-1} \; Mpc^{-1}}]$	$10^3 \Omega_{ m K}$	$w ext{ or } w_0$	w_a
wCDM					
CMB	$0.203\substack{+0.017\\-0.060}$	85^{+10}_{-6}		$-1.55\substack{+0.17\\-0.37}$	
DESI	0.2969 ± 0.0089			-0.916 ± 0.078	
DESI+Pantheon+	0.2976 ± 0.0087			-0.914 ± 0.040	
DESI+Union3	0.2973 ± 0.0091			-0.866 ± 0.052	
DESI+DESY5	0.2977 ± 0.0091			-0.872 ± 0.039	
DESI+CMB	0.2927 ± 0.0073	69.51 ± 0.92		-1.055 ± 0.036	
DESI+CMB+Pantheon+	0.3047 ± 0.0051	67.97 ± 0.57		-0.995 ± 0.023	
DESI+CMB+Union3	0.3044 ± 0.0059	68.01 ± 0.68		-0.997 ± 0.027	
DESI+CMB+DESY5	0.3098 ± 0.0050	67.34 ± 0.54		-0.971 ± 0.021	

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Model/Dataset	$\Omega_{ m m}$	$H_0 \; [{ m km \; s^{-1} \; Mpc^{-1}}]$	$10^3 \Omega_{ m K}$	$w ext{ or } w_0 ext{ } w_a$
$w_0 w_a ext{CDM}$				
CMB	$0.220\substack{+0.019\\-0.078}$	83^{+20}_{-6}		$-1.23^{+0.44}_{-0.61}$ < -0.504
DESI	$0.352\substack{+0.041\\-0.018}$			$-0.48^{+0.35}_{-0.17}$ < -1.34
DESI+Pantheon+	$0.298\substack{+0.025\\-0.011}$			$-0.888^{+0.055}_{-0.064}$ -0.17 ± 0.46
DESI+Union3	$0.328\substack{+0.019\\-0.014}$			-0.70 ± 0.11 -0.99 ± 0.57
DESI+DESY5	$0.319\substack{+0.017\\-0.011}$			$-0.781^{+0.067}_{-0.076}$ -0.72 ± 0.47
$ ext{DESI+}(heta_*, \omega_{ ext{bc}}, \omega_{ ext{bc}})_{ ext{CMB}}$	0.353 ± 0.022	$63.7^{\pm1.7}_{-2.2}$		$-0.43 \pm 0.22 -1.72 \pm 0.64$
DESI+CMB (no lensing)	0.352 ± 0.021	$63.7^{+1.7}_{-2.1}$		$-0.43 \pm 0.21 -1.70 \pm 0.60$
DESI+CMB	0.353 ± 0.021	$63.6^{+1.6}_{-2.1}$		-0.42 ± 0.21 -1.75 ± 0.58
DESI+CMB+Pantheon+	0.3114 ± 0.0057	67.51 ± 0.59		$-0.838 \pm 0.055 -0.62^{+0.22}_{-0.19}$
DESI+CMB+Union3	0.3275 ± 0.0086	65.91 ± 0.84		$-0.667 \pm 0.088 -1.09^{+0.31}_{-0.27}$
DESI+CMB+DESY5	0.3191 ± 0.0056	66.74 ± 0.56		$-0.752 \pm 0.057 -0.86^{+0.23}_{-0.20}$
DESI+DESY3 $(3 \times 2 pt)$ +Pantheon+	0.3140 ± 0.0091			$-0.870 \pm 0.061 -0.46^{+0.33}_{-0.29}$
DESI+DESY3 $(3 \times 2 pt)$ +Union3	0.333 ± 0.012			$-0.68\pm0.11-1.09^{+0.48}_{-0.39}$
DESI+DESY3 $(3 \times 2 pt)$ +DESY5	0.3239 ± 0.0092			$-0.771 \pm 0.068 -0.82^{+0.38}_{-0.32}$

U.S. Department of Energy Office of Science

Model/Dataset	$\Omega_{ m m}$	$H_0 \; [{ m km \; s^{-1} \; Mpc^{-1}}]$	$10^3 \Omega_{ m K}$	$w ext{ or } w_0$	w_a
$w_0 w_a ext{CDM} + \Omega_{ ext{K}}$					
DESI	$0.357\substack{+0.041\\-0.030}$		-2 ± 56	$-0.45\substack{+0.33\\-0.17}$	< -1.43
DESI+CMB+Pantheon+	0.3117 ± 0.0056	67.62 ± 0.60	1.1 ± 1.3	-0.853 ± 0.057	-0.54 ± 0.22
DESI+CMB+Union3	0.3273 ± 0.0086	65.98 ± 0.86	0.6 ± 1.3	-0.678 ± 0.092	$-1.03\substack{+0.33\\-0.29}$
DESI+CMB+DESY5	0.3193 ± 0.0056	66.82 ± 0.58	0.8 ± 1.3	-0.762 ± 0.060	-0.81 ± 0.24

DR2 parameter table (neutrinos)

Model/Dataset	$\Omega_{ m m}$	$H_0 \; [{ m km \; s^{-1} \; Mpc^{-1}}]$	$H_0 r_{ m d} \ [100 \ { m km \ s^{-1}}]$	$\sum m_{ u} [{ m eV}]$	$w { m or} w_0$	w_a
$\Lambda { m CDM} + \sum m_{ u}$						
DESI BAO+CMB [Camspec]	0.3009 ± 0.0037	68.36 ± 0.29	100.96 ± 0.48	< 0.0642		
DESI BAO+CMB [L-H]	0.2995 ± 0.0037	68.48 ± 0.30	101.16 ± 0.49	< 0.0774		
DESI BAO+CMB [Plik]	0.2998 ± 0.0038	68.56 ± 0.31	101.09 ± 0.50	< 0.0691		
$w{ m CDM}+\sum m_{ u}$						
DESI BAO+CMB	0.2943 ± 0.0073	69.28 ± 0.92	102.3 ± 1.3	< 0.0851	-1.039 ± 0.037	
DESI BAO+CMB+Pantheon+	0.3045 ± 0.0051	67.94 ± 0.58	100.35 ± 0.84	< 0.0653	-0.985 ± 0.023	
DESI BAO+CMB+Union3	0.3047 ± 0.0059	67.93 ± 0.69	100.33 ± 0.99	< 0.0649	-0.985 ± 0.028	
DESI BAO+CMB+DESY5	0.3094 ± 0.0049	67.34 ± 0.53	99.49 ± 0.78	< 0.0586	-0.961 ± 0.021	
$w_0 w_a ext{CDM} + \sum m_ u$						
DESI BAO+CMB	0.353 ± 0.022	$63.7^{+1.7}_{-2.2}$	$93.8\substack{+2.5 \\ -3.2}$	< 0.163	$-0.42\substack{+0.24\\-0.21}$	-1.75 ± 0.63
DESI BAO+CMB+Pantheon+	0.3109 ± 0.0057	67.54 ± 0.59	99.62 ± 0.86	< 0.117	-0.845 ± 0.055	$-0.57\substack{+0.23\\-0.19}$
DESI BAO+CMB+Union3	0.3269 ± 0.0088	65.96 ± 0.84	97.3 ± 1.2	< 0.139	-0.674 ± 0.090	$-1.06\substack{+0.34\\-0.28}$
DESI BAO+CMB+DESY5	0.3188 ± 0.0058	66.75 ± 0.56	98.43 ± 0.83	< 0.129	-0.758 ± 0.058	$-0.82\substack{+0.26\\-0.21}$

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

DR2 evidence table

$\Delta\chi^2_{ m MAP}$	Significance	$\Delta(\text{DIC})$
-4.7	1.7σ	-0.8
-8.0	2.4σ	-4.4
-9.7	2.7σ	-5.9
-12.5	3.1σ	-8.7
-4.9	1.7σ	-0.7
-10.1	2.7σ	-6.0
-13.6	3.3σ	-9.3
-7.3	2.2σ	-2.8
-13.8	3.3σ	-9.1
-10.7	2.8σ	-6.8
-17.4	3.8σ	-13.5
-21.0	4.2σ	-17.2
	$\Delta\chi^2_{\mathrm{MAP}}$ -4.7 -8.0 -9.7 -12.5 -4.9 -10.1 -13.6 -7.3 -13.8 -10.7 -17.4 -21.0	$\begin{array}{llllllllllllllllllllllllllllllllllll$

TABLE VI. Summary of the difference in the effective χ^2_{MAP} value (defined as twice the negative log posterior at the maximum posterior point) for the best-fit $w_0 w_a \text{CDM}$ model relative to the best ΛCDM model with $w_0 = -1$, $w_a = 0$, for fits to different combinations of datasets as indicated. The third column lists the corresponding (frequentist) significance levels given 2 extra free parameters, and the final column shows the results for $\Delta(\text{DIC}) = \text{DIC}_{w_0 w_a \text{CDM}} - \text{DIC}_{\Lambda \text{CDM}}$. As a rule of thumb, $\Delta(DIC)$ values < -5 indicate a 'strong' preference for $w_0 w_a \text{CDM}$ and values < -10 a 'decisive' preference [144].

U.S. Department of Energy Office of Science

DR2 BAO z-bins

Tracer	No. of redshifts	Redshift range	$z_{ m eff}$	Area $[deg^2]$	$P_0(k = 0.14)$	$V_{ m eff}~(m Gpc^3)$
BGS	$1,\!188,\!526$	0.1 < z < 0.4	0.295	12,355	7000	3.8
LRG1	$1,\!052,\!151$	0.4 < z < 0.6	0.510	10,031	10000	4.9
LRG2	$1,\!613,\!562$	0.6 < z < 0.8	0.706	10,031	10000	7.6
LRG3	$1,\!802,\!770$	0.8 < z < 1.1	0.922	10,031	10000	9.8
ELG1	2,737,573	0.8 < z < 1.1	0.955	10,352	4000	5.8
ELG2	$3,\!797,\!271$	1.1 < z < 1.6	1.321	10,352	4000	2.7
QSO	$1,\!461,\!588$	0.8 < z < 2.1	1.484	$11,\!181$	6000	2.7

U.S. Department of Energy Office of Science

DESI targets

Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$per deg^2$	$per deg^2$	$per deg^2$	sample
LRG	0.4 - 1.0	$r,\!z,\!W1$	350	580	285	$4.0 \mathrm{M}$
ELG	0.6 - 1.6	$_{g,r,z}$	2400	1870	1220	$17.1 \mathrm{~M}$
QSO (tracers)	< 2.1	$g,\!r,\!z,\!W1,\!W2$	170	170	120	$1.7 { m M}$
QSO (Ly- α)	> 2.1	$g,\!r,\!z,\!W1,\!W2$	90	250	50	$0.7 { m M}$
Total in dark time			3010	2870	1675	$23.6\mathbf{M}$
BGS	0.05 - 0.4	r	700	700	700	9.8 M
Total in bright time			700	700	700	9.8 M

DESI collaboration arXiv:1611.00036

10 Multi-Object Spectrographs:

- 360 980 nm range over 3 channels
- Resolution: 2000 (blue) 5500 (NIR)
- 500 fibers per spectrograph
- 4kx4k CCDs, 60s readout

Stable PSF

better than 1 % over many days

Low Read out noise

~ 3 e-

Throughput of optical chain is excellent ~40% at 700 nm (total)

DESI spectrograph

Parent (imaging) surveys

	1	1	1	
22.50	22.75	23.00	23.25	23.50
z-band depth (mag)				

U.S. Department of Energy Office of Science

BAO evolution for different cosmo params

- -0.40