Sub-femtometer precision displacement sensing using heterodyne cavity-tracking

<u>Shreevathsa Chalathadka Subrahmanya*</u>, Jonathan Joseph Carter^, and Oliver Gerberding*

*University of Hamburg

^Max Planck Institute for Gravitational Physics, Hanover

LGWA meeting, 17 Sept 2025

Lunar Gravitational-wave Antenna

Source: J. van Heijningen et al., J. Appl. Phys. 133, 244501 (2023)

Source: P. Ajith et al., <u>JCAP01</u> (2025) 108

Sub-femtometer precision displacement readout is the prime requirement

LISA: Laser Interferometer Space Antenna; ET: Einstein Telescope; CE: Cosmic Explorer

Interferometry options – An overview

Types	Sub-types	Remarks
Locked IFO	Two-beam IFO (Michelson, Mach-Zehnder)	Limited to sub-fringe, needs either
	Optical cavity based	closed-loop control or movable reference arm
High dynamic range IFO (Towards multi-fringe)	Homodyne Quadrature Interferometry (HoQI)	pm/vHz sensitivity, suitable for 'LGWA Soundcheck'
	Deep Frequency Modulation Interferometry (DFMI), Resonantly enhanced DFMI	Reaching fm/VHz readout noise floor, limited by the fact that power is being measured
	Heterodyne cavity-tracking	Potential candidate for LGWA

A slide from 2 years before... (11 Oct 2023, LGWA meeting @ Catania)

This talk!

What's our sensing concept?

- Construct an optical cavity consisting of the "proof mass"
- Make frequency of a laser follow the resonance of that cavity
- ➤ Relative length fluctuation of the cavity ⇒ relative frequency fluctuation of the laser
- ➤ Heterodyne readout: compare the laser frequency with a reference
- One-way motion of the proof mass:

$$\Delta L = \frac{\Delta f}{f} \cdot L$$

Heterodyne cavity-tracking

What precision is achievable?

Two points where noise can couple to the system:

- While measuring the beat frequency
- While locking the laser to the dynamic cavity

ADC quantization noise 10^{0} ADC sampling jitter noise Displacement noise [m/ $\sqrt{\text{Hz}}$] 10^{-2} 10- 10^{-21} Psig 10 mW 10^{-8} Hugh 10^{-10} Hug 10^{-8} 10^{-27} 10^{-12} 10^{-2} 10^{0} 10^{2} 10^{3} Frequency [Hz]

Heterodyne cavity-tracking represents the most precise readout that can be realized with laser interferometry for local displacement sensing

Ref.: SCS, *PhD thesis* (2025)

Experimental setup

Heterodyne cavity-tracking

- Proof mass motion is encoded in the heterodyne beat frequency, Δf
- Max. operating range is decided by the detection bandwidth (BW):

$$\Delta L_{\text{max}} = \frac{\lambda}{2} \cdot \frac{\text{BW}}{\text{FSR}} = L \cdot \frac{\text{BW}}{f}$$

with FSR: free-spectral range of the cavity, $\frac{c}{2L}$

• Example: 1 μm movement of the proof mass will shift the beat note by ~ 3.87 GHz!

GHz Phasemeter

Realized using Zynq UltraScale+ RFSoC

- Integrated circuit that combines RF signal processing with DSP on a single chip
- RF-ADC sampling at 4.096 GHz

- Multi-demodulation and phase accumulation stages
- Signal bandwidth of 2.048 GHz
- DSP speed of 512 MHz
- Highest stable tracking bandwidth of 2 MHz

RFSoC: radio-frequency system-on-chip; DSP: digital signal processing

PIR: phase increment register; LUT: look-up table

SCS et al., <u>IEEE Trans. Instrum. Meas.</u> 74, 2001108 (2025)

GHz Phasemeter

The highest bandwidth, highly stable, and fastest frequency-tracking instrument

Key features:

- 1. Input signal bandwidth of 2.048 GHz
- 3 phasemeter channels (each with two GHz PLLs)
- **PLL tracking bandwidth of 2 MHz**
- ¹ Acquisition range of 4.1 MHz
- ¹ Tracking speed of above 240 GHz/s

SCS et al., <u>IEEE Trans. Instrum. Meas.</u> 74, 2001108 (2025)

Displacement sensitivity

Mirror mount-based cavities in vacuum & heterodyne stabilization

SCS et al., Opt. Exp. 33, 4044-4054 (2025)

Limitations:

- Mechanical instability of the cavities
- Parasitic beams due to fiber-based setup

DHC: Digital Heterodyne Controller; HS: heterodyne stabilization

Operating range

SCS et al., Opt. Exp. 33, 4044-4054 (2025)

Displacement sensitivity

ULE glass-based cavities in vacuum & heterodyne stabilization

ULE: Ultra-Low Expansion; HS: heterodyne stabilization

Displacement sensitivity

Free-beam setup with Pound-Drever-Hall locking

What does this mean for LGWA?

- We are well below the requirement for LGWA Soundcheck
- ➤ LGWA requirement curves are taken from Andric et al. (arXiv:2509.04730)
- Better thermal isolation and further suppression of scattered light might uncover sub-femtometer noise floor in the deci-Hz region as well

What's next?

Compact inertial sensor development

Source: Carter et al., Sci. Rep. 14, 17775 (2024)

Source: Carter et al., <u>IEEE INERTIAL</u> (2020)

That's it!

Questions? Comments?

Additional slide

Low-frequency HoQI

ULE-Cavity Laser 1 Data -laser light --- el.cable --- fiber cable

Credits: Julian Priedemann and Marcel Beck

- Experimental setup is constructed using a toolset for adjustable picometer-stable interferometers
- More details about the toolset: M. Beck et al., <u>Class. Quantum Grav.</u>
 42, 135001 (2025)
- Laser frequency noise suppression, intensity noise suppression in post-processing, Heydemann correction, ...