Look into Planetary Interiors with A Single Seismometer

Sheng Wang D-EAPS, ETH Zurich

Kircher's model of Earth's internal fires, *Mundus*Subterraneus (1665)

Athanasius Kircher (1602-1680)

Looking into the Earth's and planetary interiors is as "simple" as X-ray imaging of your body!

Global proliferation of seismographs

Seismometers available on Earth (Mar/31/25)

(http://www.iris.washington.edu/gmap/#network=_REALTIME&planet=earth)

Tomographic images of the Earth's interior

Seismometers On Mars and the Moon

1969-1977 Lunar Seismometers, Apollo program

1976 Viking 1 (Failed to unlock) & Viking 2 (~19 months operation on deck)

1993 Mars94, Cancelled

1996 Mars96 (OPTIMISM seismometer), Failed

1996 InterMarsnet proposal, Not selected by ESA/NASA

1990s MESUR (Mars Environmental SURvey), Abandoned

1990s-2000s NetLander mission (SEISM seismometer), Shelved

2000s ExoMARS mission, Cancelled

2018-2022 Mars SEIS seismometer, InSight mission

The ~\$1 Billion InSight Station on Mars

Planetary Exploration Budget Dataset https://www.planetary.org/space-policy/cost-of-mars-insight

What can we do with a single instrument?

Andrija Mohorovičić 1857-1936

Richard Dixon Oldham 1858-1936

Inge Lehmann 1888-1993

Beno Gutenberg 1889-1960

... a **single** instrument ... the **entire** interior of a planet ...?

Global Inter-Source Correlation

 Cross-correlation of seismic waveform records between source events on a global scale.

Global Inter-Receiver Correlation

• Cross-correlation of seismic waveform records between receivers on a global scale.

Global Inter-Receiver Correlation

(Boué et al., 2013; Lin and Tsai, 2013; Nishida, 2013; Wang et al., 2015; Poli et al., 2017; Phạm et al., 2018;.....)

Global correlogram (correlation wavefield)

Global Inter-Source Correlation

• Inter-source correlations can be theoretically derived from the inter-receiver correlations via exchanging the locations of sources and receivers.

---- Correlation pairs

Inter-source correlation creates "virtual receivers"

(Curtis et al., 2009)

Inter-source correlation creates "virtual receivers"

(Shen and Zhan 2020; Shen et al, 2021)

However...

Realistic attempts fail to present theoretical expectations.

Observation contradicts theory!

However...

• Fewer publications on inter-source correlation than on inter-receiver ones.

VS.

Inter-source correlation

- 1 Hong and Menke, 2006;
- 2 Curtis, 2009;
- 3 Tonegawa & Nishida, 2010;
- 4 Morency & Matzel, 2017
- 5 Shirzad et al., 2019
- 6 Eulenfeld, 2020
- 7 Shen and Zhan, 2020;
- 8 Shen et al., 2021;
- 9 Saengduean et al., 2021

Inter-receiver correlation

Beachball representation of a quake source

Selecting quake sources

Selected quakes (Thrust)

Discarded quakes

Single-receiver correlogram

Single-receiver correlogram can be used to constrain internal structures based on:

- the emergence of specific correlation features;
- o timing;
- amplitude;
- distance-time relationship;
- waveforms;
- 0

Constrain the existence of the Earth's core and measure its size.

Varied sensitivities to Mantle structure by different correlation signals.

(Wang and Tkalčić, 2023)

Synthetic Marsquake Correlogram

Synthetic Marsquake Correlogram

K2* time window ScS* time window R_{core} =1761km R_{core} =1771km R_{core} =1781km R_{core}=1791km R_{core} =1801km R_{core}=1811km Observation Observation R_{core}=1821km R_{core} =1831km R_{core}=1841km R_{core} =1851km R_{core}=1861km R_{core} =1871km 700 2050 2100 2150 750 800 Time (s) Time (s)

(Wang and Tkalčić, 2022)

Different constraints on the Martian core

Correlation constraints

>20 wt% light elements in the core?

A smaller and denser core?

(Khan et al., 2023; Samuel et al., 2023)

Conclusion

• An "inverted telescope" for probing planetary interiors.

• A single station as powerful for illuminating the entire interior of a planetary body.

New opportunities ahead!

Thank you!
Comments & Questions!