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Why would we be interested in WD
mergers?

» How frequent are they?

» What do they result in?



Artwork credit: Caltech (ZTF)
WD mergers are a common phenomenon
» about 10 WDs in Galaxy R ' ' b
(Napiwotzki 2009) | b .
> about 2.5 x 10° of them in WD-WD . . |
binaries (Nelemans+ 2001) % |
— most common DCOs

» about half of them close enough such
that GW emission drives them into

contact, most will merge
(Nelemans+, 2001)




WD mergers give rise to a zoo of
astrophysical phenomena

» thermonuclear
supernovae

» classical nova outbursts

» formation of R Coronae
Borealis stars

» formation of He rich
subdwarfs sdB and sdO

» accretion-induced
collapse (AIC) to neutron
star (or thermonuclear
ECSN)
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What can we learn from studying WD
mergers?

» determine the progenitor system and explosion mechanism of Type la supernovae
(see also Benetti+, 2025)

» test hypothesized formation channels for RCB stars and hot subdwarfs

» understand how highly magnetized WDs form

» constrain mechanism CE interaction



Physical processes in merging WDs

> mass ejection

» mixing of composition near surface of more massive WD
» magnetic field amplification

» formation of jet-like outflow

» dynamic (in some cases explosive) thermonuclear burning
» gravitational collapse to NS

» emission of gravitational waves



How can we make progress?

theorist’s view: simulate interaction/merger processes of WDs and derive
multimessenger observables

» why important? as usual in astronomy, signals are degenerate and it is hard to settle
physical models with single observations...
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What observables and messengers do we have?

» optical observables (spect

» nucleosynthesis (GCE)
» radio from jets (ALMA)

Y

» gravitational waves — previous work: Lorén-Aguilar+ 2009, Dan+ 2011

» neutrinos?



Simulating WD mergers

reasonably accessible to limitations:

numerical simulations - ,
» equilibration of remnant

» spatial scales , .
» resolution of mixing and

» timescales burning processes

> ignition of combustion

Artwork credit: Caltech (ZTF)



Numerical approaches

Springel, 2010

> Smooth Particle
Hydrodynamics

> moving mesh MHD
— Arepo



Derivation of the GW signal

» all our simulations are non-relativistic

» quadrupole radiation from Newtonian gravity (Moran Fraile+ 2023, Seitenzahl+ 2015,
Blanchet+ 1990, Nakamura & Oohara 1989)

» usually written out as a “by-product” from all our simulations



Common-envelope events

> example: 2 Mo (49 Ro) RG primary star with 0.6 Mo WD companion (Moran Fraile+
2023)

» if envelope ejected successfully = cores don’t merge

» rate of inspiral not determined by GW emission but by drag force in envelope (see also
Ginat+ 2020, Renzo+ 2021)

» final orbital separation ~3.6 Ro (orbit eccentric) = peak frequency 3.4 x 10~ Hz

» envelope contributes little (and only at very low frequencies) to GW emission



Successful CE ejection

> Moran Fraile+, 2023 (assumed distance: 1 kpc)



Formation of bipolar planetary nebulae

» two velocity components: toroidal slow ~10 - 30 km/s ejected envelope material and
narrow polar magnetically driven outflow with ~ 90 - 130 km/s

» morphology of ejected 3D rendering Observation

material resembles

structure of bipolar
PNe
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Common-envelope events

» example: 2 Mo (49 Ro) primary star with 0.6 Mo WD companion
» core merger if envelope ejection fails

» rate of inspiral initially dominated by drag force in envelope, later by mass transfer
between cores and tidal interaction

» final phase of core merger simulated without envelope:

— merger between 0.4 Mo He WD and 0.6 Mo CO WD



CE merger

> Moran Fraile+, 2023



Adding a CE inspiral phase

> simple analytic fits : 1
o ] /7
(Moran Fraile+, 2023) 1019 - ya "l

] "‘.:\

C .

© 107203 .

) . R

o) i R

.-': _ / “o

0 10721 4 e,

5 § ’K‘}?‘{ P

© . 600 RV

(4] . (\/ ’0' Vs

S 10—22 +9?‘ e e?

8L 107 3 (R AANN

O E o/"/’/
N '4}4' ?3
_ P

10-2 E f’
]
174
10_24 'IIII T T lllllll T T lllllll T T lllllll T T lllllll

106 107° 10—* 103 1072 101
f (Hz)



Magnetically driven jets in CE mergers or
WD mergers

> Moran Fraile,
unpublished



Switching on nuclear reactions

> Moran Fraile+, 2023



Optical observables

» 8%x107° M, of *°Ni, most He unburnt, rich in *°Ca = Ca-rich transient? (NLTE spectra:
Callan+ subm.)

Spectra 20 days after peak magnitude
Merger model (15.0d) SN 2012hn (19.0d)

Spectra at peak magnitude

= Merger model (0.0d) SN 2012hn (3.0d) —— SN 2005E (20.0d) Ca feature
~— SN 2005E (-2.0d) Ca feature = SN 2007ke (19.4d) Na-I/ He-I feature
= SN 2010et (-6.4d) Na-I/ He-I feature = SN 2012hn (19.0d)
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Optical observables

» thermonuclear Type Il supernova! = Kozyreva+, 2024
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GW signals of SNe la

>  GW signals from Mc, WD explosion models (Falta+ 2011, Seitenzahl+ 2015)

> WD merger: explosion = disappearance of a nearly monochromatic wave (Seto

2023)

> Korol+, 2024: LISA provides complete sample of double WD SN la progenitors
in the Galaxy; chirp masses put lower constraints on mass of primary WD
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GW signals of SNe la

>

direct
observation —
likelihood 3-7%

in 10 years
(Korol+, 2024)

target for
multimessenger
astronomy —
combine with
SN la electro-
magnetic signal
to validate
explosion

mechanism
(Korol+, 2024)

Korol+, 2024



Non-explosive WD mergers

» merger between 0.3 Mo He WD and 0.6 M CO WD (Agaeva+ in prep.)
» potential formation channel of RCB stars
» observations show low ¢0Q/0

» dynamic, but non-explosive He burning near the surface of the CO WD that can
produce 80 (Holas+, subm.)

» magnetic fields strongly amplified, polar (jet-like?) outflow



Non-explosive WD mergers

> Agaeva+ in prep.



Summary

» LGWA can make important contributions to understanding WD mergers

» interesting targets for multimessenger astronomy

» parameter space will be explored with numerical simulations = produce the GW
signal as a standard result

» Would a data base of GW signals from our simulations be useful?
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