Multi-messenger astronomy for white dwarf mergers – a theorist's perspective

LGWA workshop, San Benedetto del Tronto, Italy, September 16, 2025

Friedrich Röpke

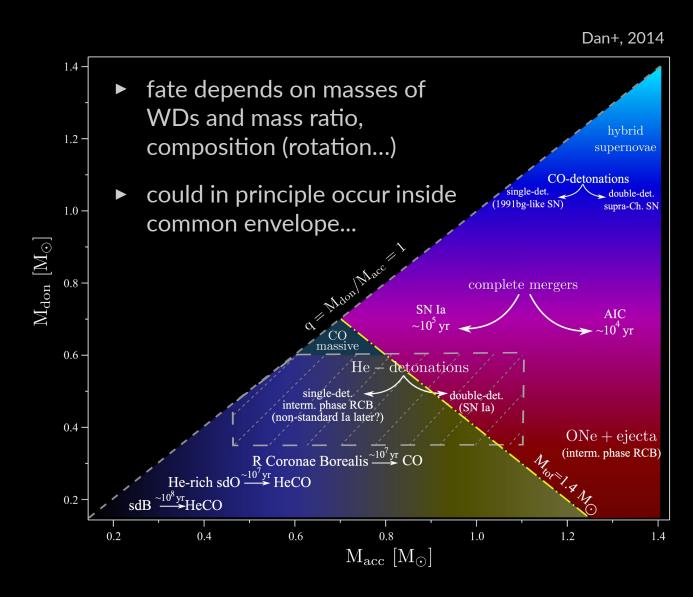
Heidelberg

with

Javier Morán Fraile, Veronica Agaeva, Ivo Seitenzahl, Rüdiger Pakmor, Sebastian Ohlmann, Fabian Schneider, Philipp Podsiadlowski, Robert Fisher, Zhengwei Liu, Christine Collins, Fionntan Callan, Stuart Sim, Alexandra Kozyreva, Luke Shingles, Ashley Ruiter, Wolfgang Hillebrandt

Why would we be interested in WD mergers?

- How frequent are they?
- ► What do they result in?


WD mergers are a common phenomenon

- ► about 10¹⁰ WDs in Galaxy (Napiwotzki 2009)
- about 2.5 × 10⁸ of them in WD-WD binaries (Nelemans+ 2001)
 → most common DCOs
- ► about half of them close enough such that GW emission drives them into contact, most will merge (Nelemans+, 2001)

WD mergers give rise to a zoo of astrophysical phenomena

- thermonuclear supernovae
- classical nova outbursts
- formation of R Coronae Borealis stars
- formation of He rich subdwarfs sdB and sdO
- accretion-induced collapse (AIC) to neutron star (or thermonuclear ECSN)
- **...**

What can we learn from studying WD mergers?

- determine the progenitor system and explosion mechanism of Type Ia supernovae (see also Benetti+, 2025)
- test hypothesized formation channels for RCB stars and hot subdwarfs
- understand how highly magnetized WDs form
- constrain mechanism CE interaction
- **...**

Physical processes in merging WDs

- mass ejection
- mixing of composition near surface of more massive WD
- magnetic field amplification
- formation of jet-like outflow
- dynamic (in some cases explosive) thermonuclear burning
- gravitational collapse to NS
- emission of gravitational waves

How can we make progress?

theorist's view: simulate interaction/merger processes of WDs and derive multimessenger observables

▶ why important? as usual in astronomy, signals are degenerate and it is hard to settle physical models with single observations...

What observables and messengers do we have?

- optical observables (spectra...)
- nucleosynthesis (GCE)
- radio from jets (ALMA)
- ▶ gravitational waves → previous work: Lorén-Aguilar+ 2009, Dan+ 2011
- neutrinos?

Simulating WD mergers

reasonably accessible to numerical simulations

- spatial scales
- timescales

limitations:

- equilibration of remnant
- resolution of mixing and burning processes
- ignition of combustion

Numerical approaches

Springel, 2010

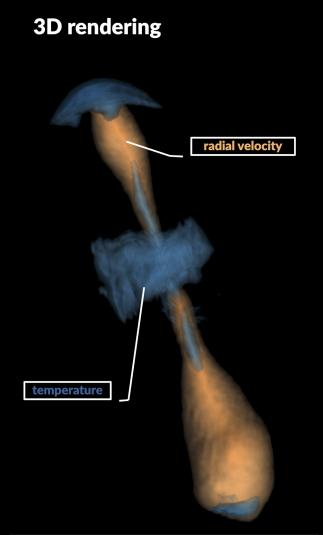
- Smooth Particle Hydrodynamics
- moving mesh MHD
 - → Arepo

Derivation of the GW signal

- ► all our simulations are non-relativistic
- quadrupole radiation from Newtonian gravity (Morán Fraile+ 2023, Seitenzahl+ 2015, Blanchet+ 1990, Nakamura & Oohara 1989)
- usually written out as a "by-product" from all our simulations

Common-envelope events

- example: 2 M_{\odot} (49 R_{\odot}) RG primary star with 0.6 M_{\odot} WD companion (Morán Fraile+ 2023)
- if envelope ejected successfully → cores don't merge
- ► rate of inspiral not determined by GW emission but by drag force in envelope (see also Ginat+ 2020, Renzo+ 2021)
- ▶ final orbital separation ~3.6 R_{\odot} (orbit eccentric) \rightarrow peak frequency 3.4 \times 10⁻⁵ Hz
- envelope contributes little (and only at very low frequencies) to GW emission


Successful CE ejection

Morán Fraile+, 2023 (assumed distance: 1 kpc)

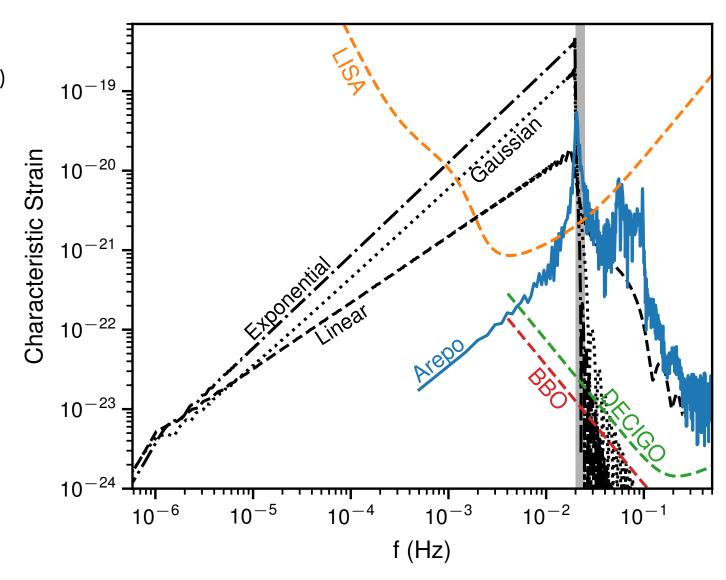
Calabash Nebula (OH 231.8+04.2)

Formation of bipolar planetary nebulae

- ▶ two velocity components: toroidal slow ~10 30 km/s ejected envelope material and narrow polar magnetically driven outflow with ~ 90 - 130 km/s
- morphology of ejected material resembles structure of bipolar PNe

Common-envelope events

- ▶ example: $2 M_{\odot}$ (49 R_{\odot}) primary star with 0.6 M_{\odot} WD companion
- core merger if envelope ejection fails
- ► rate of inspiral initially dominated by drag force in envelope, later by mass transfer between cores and tidal interaction
- ► final phase of core merger simulated without envelope:
 - ightarrow merger between 0.4 M_{\odot} He WD and 0.6 M_{\odot} CO WD


CE merger

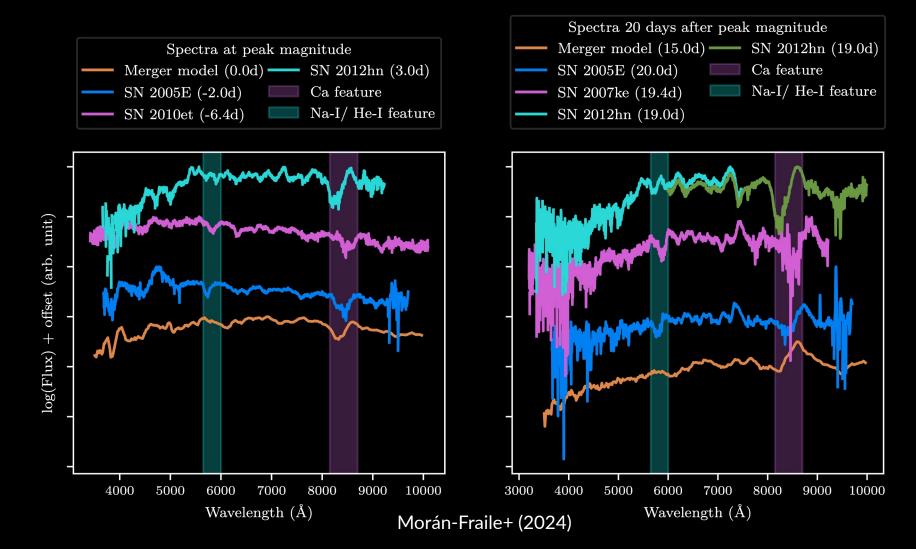
► Morán Fraile+, 2023

Adding a CE inspiral phase

simple analytic fits

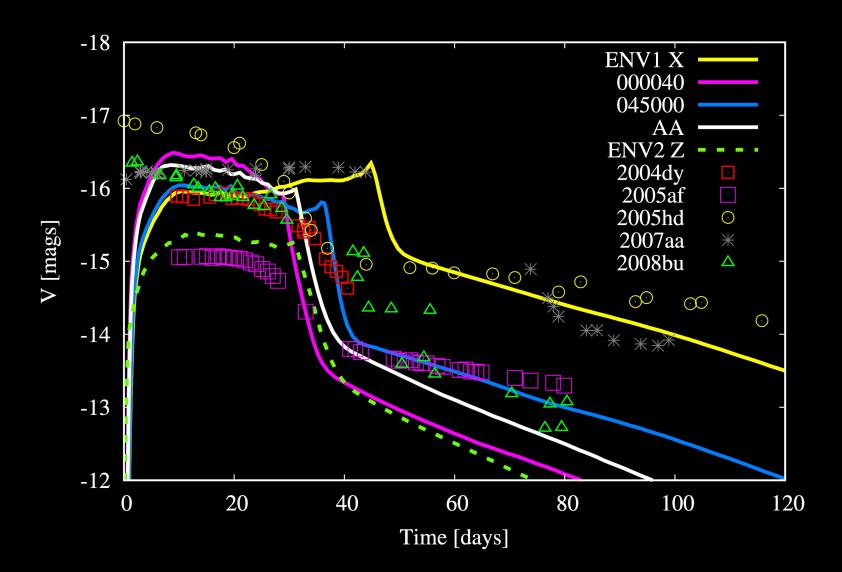
(Morán Fraile+, 2023)

Magnetically driven jets in CE mergers or WD mergers

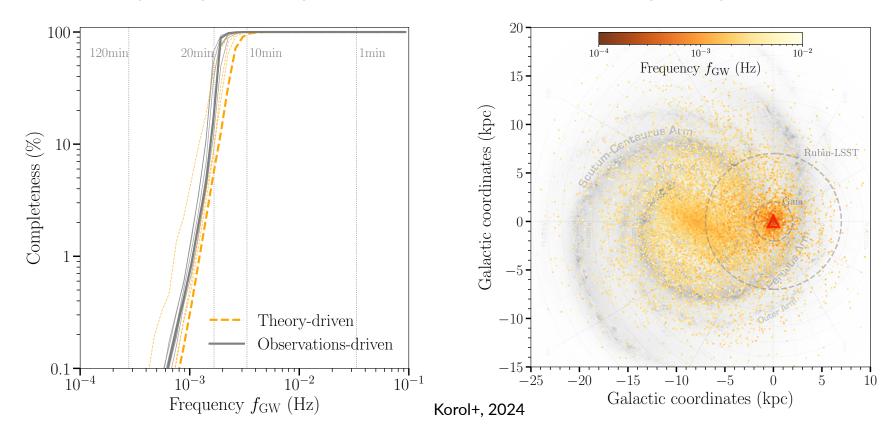

Morán Fraile, unpublished

Switching on nuclear reactions

► Morán Fraile+, 2023


Optical observables

▶ 8×10^{-3} M_o of ⁵⁶Ni, most He unburnt, rich in ⁴⁰Ca \rightarrow Ca-rich transient? (NLTE spectra: Callan+ subm.)


Optical observables

► thermonuclear Type II supernova! → Kozyreva+, 2024

GW signals of SNe la

- ► GW signals from M_{Ch} WD explosion models (Falta+ 2011, Seitenzahl+ 2015)
- ► WD merger: explosion → disappearance of a nearly monochromatic wave (Seto 2023)
- Korol+, 2024: LISA provides complete sample of double WD SN la progenitors in the Galaxy; chirp masses put lower constraints on mass of primary WD

GW signals of SNe Ia

- direct
 observation →
 likelihood 3-7%
 in 10 years
 (Korol+, 2024)
- ► target for multimessenger astronomy → combine with SN la electromagnetic signal to validate explosion mechanism (Korol+, 2024)

Non-explosive WD mergers

- ▶ merger between 0.3 M_{\odot} He WD and 0.6 M_{\odot} CO WD (Agaeva+ in prep.)
- potential formation channel of RCB stars
- ▶ observations show low ¹6O/¹8O
- dynamic, but non-explosive He burning near the surface of the CO WD that can produce ¹⁸O (Holas+, subm.)
- magnetic fields strongly amplified, polar (jet-like?) outflow

Non-explosive WD mergers

Agaeva+ in prep.

Summary

- ► LGWA can make important contributions to understanding WD mergers
- interesting targets for multimessenger astronomy

- ▶ parameter space will be explored with numerical simulations → produce the GW signal as a standard result
- Would a data base of GW signals from our simulations be useful?

Acknowledgments

Funded by the European Union

European Research Council

Established by the European Commission