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Why would we be interested in WD 
mergers?
► How frequent are they?

► What do they result in?



WD mergers are a common phenomenon
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► about 1010 WDs in Galaxy        
(Napiwotzki 2009)

► about 2.5 × 108 of them in WD–WD 
binaries (Nelemans+ 2001)                        
→ most common DCOs

► about half of them close enough such 
that GW emission drives them into 
contact, most will merge          
(Nelemans+, 2001)



WD mergers give rise to a zoo of 
astrophysical phenomena
► thermonuclear 

supernovae 

► classical nova outbursts

► formation of R Coronae 
Borealis stars

► formation of He rich 
subdwarfs sdB and sdO

► accretion-induced 
collapse (AIC) to neutron 
star (or thermonuclear 
ECSN)

► …

Dan+, 2014

► fate depends on masses of 
WDs and mass ratio, 
composition (rotation…)

► could in principle occur inside 
common envelope...



What can we learn from studying WD 
mergers?
► determine the progenitor system and explosion mechanism of Type Ia supernovae   

(see also Benetti+, 2025)  

► test hypothesized formation channels for RCB stars and hot subdwarfs

► understand how highly magnetized WDs form

► constrain mechanism CE interaction

► …



Physical processes in merging WDs

► mass ejection

► mixing of composition near surface of more massive WD

► magnetic field amplification

► formation of jet-like outflow

► dynamic (in some cases explosive) thermonuclear burning

► gravitational collapse to NS

► emission of gravitational waves



How can we make progress?

theorist’s view: simulate interaction/merger processes of WDs and derive 
multimessenger observables

► why important? as usual in astronomy, signals are degenerate and it is hard to settle 
physical models with single observations…

What observables and messengers do we have?

► optical observables (spectra...)

► nucleosynthesis (GCE)

► radio from jets (ALMA)

► gravitational waves → previous work: Lorén-Aguilar+ 2009, Dan+ 2011

► neutrinos?



Simulating WD mergers
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reasonably accessible to 
numerical simulations

► spatial scales

► timescales

limitations: 

► equilibration of remnant

► resolution of mixing and 
burning processes

► ignition of combustion 
waves



Numerical approaches

▸ Smooth Particle 
Hydrodynamics

▸ moving mesh MHD 
→ Arepo

Springel, 2010



Derivation of the GW signal

► all our simulations are non-relativistic

► quadrupole radiation from Newtonian gravity (Morán Fraile+ 2023, Seitenzahl+ 2015, 
Blanchet+ 1990, Nakamura & Oohara 1989)

► usually written out as a “by-product” from all our simulations



Common-envelope events

▸ example: 2 M☉ (49 R☉) RG primary star with 0.6 M☉ WD companion (Morán Fraile+ 
2023)

► if envelope ejected successfully → cores don’t merge

► rate of inspiral not determined by GW emission but by drag force in envelope (see also 
Ginat+ 2020, Renzo+ 2021)

► final orbital separation ~3.6 R☉ (orbit eccentric) → peak frequency 3.4 × 10–5 Hz

► envelope contributes little (and only at very low frequencies) to GW emission



Successful CE ejection

▸ Morán Fraile+, 2023 (assumed distance: 1 kpc)



Formation of bipolar planetary nebulae
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► two velocity components: toroidal slow ~10 – 30 km/s ejected envelope material and 
narrow polar magnetically driven outflow with ~ 90 – 130 km/s

► morphology of ejected 
material resembles 
structure of bipolar 
PNe



Common-envelope events

► example: 2 M☉ (49 R☉) primary star with 0.6 M☉ WD companion

► core merger if envelope ejection fails

► rate of inspiral initially dominated by drag force in envelope, later by mass transfer 
between cores and tidal interaction

► final phase of core merger simulated without envelope: 

→ merger between 0.4 M☉ He WD and 0.6 M☉ CO WD



CE merger

▸ Morán Fraile+, 2023



Adding a CE inspiral phase
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(Morán Fraile+, 2023)



Magnetically driven jets in CE mergers or 
WD mergers
▸ Morán Fraile, 

unpublished



Switching on nuclear reactions

▸ Morán Fraile+, 2023



Optical observables

► 8×10–3 M⊙ of 56Ni, most He unburnt, rich in 40Ca → Ca-rich transient?  (NLTE spectra: 
Callan+ subm.)

Morán-Fraile+ (2024)



Optical observables

► thermonuclear Type II supernova! → Kozyreva+, 2024



GW signals of SNe Ia

▸ GW signals from MCh WD explosion models (Falta+ 2011, Seitenzahl+ 2015)

▸ WD merger: explosion → disappearance of a nearly monochromatic wave (Seto 
2023)

▸ Korol+, 2024: LISA provides complete sample of double WD SN Ia progenitors 
in the Galaxy; chirp masses put lower constraints on mass of primary WD
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GW signals of SNe Ia

▸ direct 
observation → 
likelihood 3-7% 
in 10 years 
(Korol+, 2024)

▸ target for 
multimessenger 
astronomy → 
combine with 
SN Ia electro-
magnetic signal 
to validate 
explosion 
mechanism 
(Korol+, 2024)

Korol+, 2024



Non-explosive WD mergers

► merger between 0.3 M☉ He WD and 0.6 M☉ CO WD (Agaeva+ in prep.)

► potential formation channel of RCB stars

► observations show low 16O/18O

► dynamic, but non-explosive He burning near the surface of the CO WD that can 
produce 18O (Holas+, subm.)

► magnetic fields strongly amplified, polar (jet-like?) outflow



Non-explosive WD mergers

▸ Agaeva+ in prep.



Summary

► LGWA can make important contributions to understanding WD mergers

► interesting targets for multimessenger astronomy

► parameter space will be explored with numerical simulations → produce the GW 
signal as a standard result

► Would a data base of GW signals from our simulations be useful?
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