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InSight: Interior Exploration using Seismic
Investigations, Geodesy and Heat Transport

Figure: InSight on Mars. Landed: Nov. 26, 2018.

InSight is the first dedicated geophysical mission since Apollo and
Viking.



Summary of observed marsquake types
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Figure: Verical-component spectrograms and filtered waveforms for the
main seismic event types detected on Mars.



Marsquakes and body waves
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Figure: Filtered three-component waveforms of event S0235b.



Locating marsquakes

Figure: Location of the largest marsquakes (from Zenh&usern et al.,
2022).



Seismic velocity structure

Figure: Seismic velocity structure of Mars from inversion of body wave
travel time data (from Khan et al., 2023).



Beyond seismic body waves

* Normal modes provide strong constraints on the average
radial seismic velocity structure (cf. PREM).
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Beyond seismic body waves

e Normal modes provide strong constraints on the average
radial seismic velocity structure (cf. PREM).

* Free oscillation frequencies (0.001-0.01 Hz) are independent
of source location and origin time.

¢ To deduce Mars’s mantle velocity structure independently of
body waves (0.1-1 Hz).



Marsquakes and normal modes
e Marsquake magnitudes ~2.5—4.6 (MQS v14, 2023).




Marsquakes and normal modes

e Marsquake magnitudes ~2.5-4.6 (MQS v14, 2023).
e S1222a (Myy~4.6, A~37°) (Kawamura et al., 2023).
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Figure: Vertical-component velocity spectrograms of Sols 1222 and 184
(from Durén et al., 2024).



InSight seismic data overview
e Continuous excitation of the background free oscillations
through environmental interaction (Nishikawa et al., 2019).
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Figure: Evolution of Martian seismic background noise recorded by SEIS
(from Duran et al., 2024).



InSight seismic data overview — continued
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Figure: Evolution of Martian seismic background noise recorded by SEIS
(a) 0.1—1 Hz and (b) 0.01-0.1 Hz (from Duran et al., 2024).



Glitch removal

e Three-stage process: 1) SEISGlitch (Scholz et al., 2021); 2)
TwistPy (Sollberger, 2023); 3) Manual removal.

Figure:
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Deglitching scheme applied to S1222a (from Duran et al., 2024).



Post-processed data
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Figure: Summary of data after glitch removal (from Duran et al., 2024).



Auto-correlation analysis and spectral computation

e Cross-correlation (CC):

T
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e Geometrically-normalized cross-correlation (GNCC):
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¢ Phase cross- correlation (PCC):
PCC( Z‘ezi’(t + e’L‘I/(t-f—T)‘V _ ’€i<I>(t) _ ei‘ll(t-‘r'r)’u (3)

Stacked spectra are computed using linear, non-linear nth-root and
phase-weighted stacking (Schimmel et al., 2018).



Earth

Probability density
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Figure: Acceleration power density spectra for stations Black Forest
Observatory (BFO) and Cocos Island (COCO) based on 244 days of
24-hr autocorrelations (from Duran et al., 2024).



Earth — continued

Probability density

0.0 0.5 1.0
0530 0540 0S50 0560
| |

._.
15)
IS

N
z
s
&
E
[}
e
3
=
=
£
<

4 5
Frequency (mHz)

Figure: Acceleration power density spectra for Cocos Island (COCO)
based on 800 days of 24-hr autocorrelations (from Duran et al., 2024).



Mars
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Figure: Acceleration power density spectra for Mars (from Duran et al.,
2024).



Cluster analysis and feature extraction
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Figure: Comparison of stacked spectra, normal-mode predictions and
spectral features (peaks) based on clustering analysis (from Duran et al.,
2024).
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Cluster analysis and feature extraction
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Figure: Comparison of stacked spectra, normal-mode predictions and
spectral features (peaks) based on clustering analysis (from Duran et al.,
2024).



Outlook — Seismology on the Moon

e Background free oscillations of the Moon
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e Background free oscillations of the Moon

e Noise sources: impacts, continuous deep moonquake activity,
lunar sunrise/sunset, GW (quiet periods)



Outlook — Seismology on the Moon

e Background free oscillations of the Moon

e Noise sources: impacts, continuous deep moonquake activity,
lunar sunrise/sunset, GW (quiet periods)

Figure: Lunar subsurface investigated from correlation of seismic noise.
From Larose et al. (2005).
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Conclusions

e We processed and analysed the continuous seismic data
collected by the InSight mission for Mars’s background free
oscillations.

e We implemented automated and manual processing schemes
to remove glitches in the InSight data.

e Spectral amplitudes associated with normal modes excited by
the largest recorded events are well below the background
noise.

e We computed and stacked spectra from 1-Sol long
autocorrelations for 966 Sols of continuous data to enhance
any background free oscillations present in the data.

e Some spectral peaks align with fundamental spheroidal

normal-mode predictions and may be atmosphere-induced.
Yet, unambiguous detection remains difficult.



Conclusions — continued

¢ Additional deglitching strategies (manual) may possibly
improve chances of detection, although the available data
quantity is likely to prove a limiting factor.



Conclusions — continued

¢ Additional deglitching strategies (manual) may possibly
improve chances of detection, although the available data
quantity is likely to prove a limiting factor.

e For seismology on Mars to maximize gain, the seismometer

should not only be placed on the ground but needs to be
removed from full-scale environmental exposure.



her reading

Searching the InSight Seismic Data for
Mars’'s Background-Free Oscillations

Cecilia Duran™®, Amir Khan™'?%, Johannes Kemper'®, Iris Fernandes®“, Klaus Mosegaard®®,
Jeroen Tromp*®, Marion Dugué'®, David Sollberger°®, and Domenico Giardini'

Abstract
Mars’s atmosphere has theoretlcally been predlcted to be strong enough to continuously
excite Mars’s providing an i means
of verifying radial seismic body-wave mudels of Mars determined from marsquakes and
meteorite impacts recorded during the Interior ion using Seismic i
Geodesy, and Heat Transport (InSight) mission. To extract the background-free oscilla-
tions, we p d and the q seismic data, consisting of 966 Sols
(a Sol is equivalent to a Martian day), collected by the Mars InSight mission using both
automated and manual deglitching schemes to remove nonseismic disturbances. We then
1-Sol-long i for the entire data set and stacked these to
enhance any normal-mode peaks present in the spectrum. We find that while peaks
in the stacked spectrum in the 2-4 mHz frequency band align with predictions based
on seismic body-wave models and appear to be :onsnstent across the different processing
and stacking applied, i of induced free oscil-  Cite this article as Duran, C., A. Khan,
N N 3 J. Kemper, 1. Fernandes, K. Mosegaard,
lations in the Martian seismic data nevertheless remains difficult. This possibly relates to | 1romp, M. Dugué, D. Sollberger, and
the limited number of Sols of data that stack coh ly and the il of D. Giardini (2024). Searching the InSight
glitch-related signal that affects the seismic data across the normal-mode frequency f;‘f“;;;i“g,x;’;if af:g";“)?dﬁ'fi
range (~1-10 mHz). Improved deglitching schemes may allow for clearer detection doi: 10.1785/0220240167. ’ '
and identification in the future. Supplemental Material
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Deglitching: polarisation attributes
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Insight seismic data overview (0.001-1 Hz)
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Magnitude estimate of BFOs
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Normal mode sensitivity kernels
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Data processing

Phase 1

Raw data

Deglitching 2: filter
out glitches by
polarization attributes

Phase 2

Compute
autocorrelations

Deglitching 1: remove
steps in acceleration

Stack autocorrelations
to desired number of
sols

Remove instrument
response, detrend,
rotate to ZNE, band-
pass filter

Cut to 1-sol length,
apply spectral
whitening

Compute spectrum

Figure: Data processing workflow (from Duran et al., 2024).



