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HOT TOPIC FOR TIME DOMAIN ASTRONOMY
IN THE NEXT DECADE

CCSNe are key probes of fundamental physics, stellar nucleosynthesis, late evolutionary phases, galaxy
star formation rate and chemical evolution.
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FUTURE SYNERGIES

Messenger Current Instruments Future/Upgrades
Neutrinos Super-Kamiokande, IceCube, Borexino | DUNE, Hyper-Kamiokande, JUNO, IceCube Gen2
Gravitational Waves LIGO, Virgo, KAGRA Einstein Telescope, Cosmic Explorer
Optical / NIR ZTF, Pan-STARRS Rubin LSST
X-rays / Gamma Swift, Fermi, INTEGRAL THESEUS, SVOM, AMEGO-X
TeV /SBO HESS, MAGIC, VERITAS CTA, SWGO
Radio VLA, MeerKAT SKA

Improved sensititity of 3rd generation
GW detector, such as ET, and the
increase of detection from future

neutrino detection will enable targeted

multimessenger searches for nearby

CCSNe.
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CCSNE AS GRAVITATIONAL WAVE EMITTERS

GW EMISSION MECHANISM:

» Proto-Neutron Star Oscillations
G-mode and f-mode oscillations.

» Standing Accretion Shock Instability &
Convection

Asymmetric motions in the post-shock region.

» Prompt Convection

Early-stage convection due to negative
entropy gradients.

Detectability: Limited to a few seconds
Energy Range: 10710 — 1()_7M®(:2
Frequency Range: 100Hz — 1kHz
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KEY OBJECTIVE OF OUR PROJECT

How many CCSNe we expect in the Milky Way and Magellanic Clouds?

Rate from different probes

Can ET detect these CCSNe? How far?
SNR

Horizon distance




CCSN RATE IN THE MILKY WAY

Observed rate:
> Last observed SN: SN1604 (Kepler's SN)

> Detection Challenges: dust absorption in the Galactic disk

» Indirect proxies: Counts of massive stars, SN remnants, elements aboundancies, historical SN..

» Rate from the combination of different proxies: 1.63 £ 0.46 events

per century (Rozwadowska et al. 2021)

Rate from a massive star distribution:

» TRILEGAL spatial distribution of massive stars (Dal Tio et
al. 2025)

» Progenitor mass range: from 9 to 25 M,

» Preliminary estimate of core-collapse supernovae rate
from simulations: ~ 1 event per century
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ET DETECTION CAPABILITY
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Simulated waveform for 23 M, (D.Vartanyan et al. 2023)
GWHFISH (U. Dupletsa et al. 2023) is a simulation software for assessing detection and parameter estimation w G ‘T’

capabilities of future GW detectors, optimized for binary coalescence waveforms (LALsuite-based). GWFISH .oasss
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SNR

PRELIMINARY RESULTS: HORIZON
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expanding CCSN multi-messenger astronomy beyond the Magellanic Clouds.




PRELIMINARY RESULTS: SNR
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SNR-weighted density maps: identity the highest probability region for detection by the ET.




CONCLUSIONS

CCSNe are promising sources for multimessenger astrophysics:

> To date, no CCSN has been through GWSs, and only SN 1987A has been observed through neutrino
emission.

> Even a single multimessenger event could revolutionize our understanding of CCSNe.
The Einstein Telescope will open a new era in GW detection from these events:
> In our work we estimated expected GW detection rate and horizon of ET for the CCSNe.

> Preliminary results suggest possible detection up to the Magellanic Clouds in synergy with Cosmic
Explorer.

Future efforts:
> Simulation with waveform models for rotating progenitor stars of CCSNe;
» Coordination between neutrino and GW detectors to maximize detection confidence and sky localization;

> Optimization of EM follow-up strategies to capture SBO and probing explosion geometry and
nucleosynthesis.




