Transforming Astronomy in the 2040s INAF HQ May, 15th-16th, 2025

Superconducting-based technologies for VIS/NIR and sub-mm/mm domain

C. Macculi (INAF/IAPS Roma), M. Uslenghi (INAF/IASF-Mi), A. Paiella (La Sapienza Roma1), M. Rajteri (IRNiM Torino), A. Gaggero (CNR/IFN Roma)

on behalf of a more extended team

• sub-mm/mm

• KIDs \rightarrow A. Paiella (La Sapienza Roma1)

• VIS/NIR

- Transition-Edge Sensors: TES → M. Rajteri (IRNiM Torino)
- Superconducting nanowire single photon detectors: SNSPD → A. Gaggero (CNR/IFN Roma)

KIDs for sub-mm/mm @ Sapienza & IFN-CNR Roma2 Tor Vergata

Alessandro Paiella

<u>Contributors:</u> P. de Bernardis, E. Battistelli, C. Bellucci, F. Cacciotti, A. Capponi, A. Coppolecchia, I. Di Nitto, G. Isopi, L. Lamagna, S. Masi, G. Pettinari, F. Piacentini

Kinetic Inductance Detectors - KIDs

- KIDs are low-temperature, fast (~ 10-100 μs), superconductive detectors, where the radiation is detected by sensing changes of the kinetic inductance.
- A superconductor, cooled below its critical temperature T_c , presents two populations of electrons: quasiparticles and Cooper pairs (binding energy $2\Delta \approx 3.5k_BT_c$
- Pair-breaking radiation, $hv > 2\Delta$, can break Cooper pairs, producing a change in the population relative densities, and thus in the kinetic inductance.
- To detect the change in kinetic inductance, a superconducting film is configured to serve as the inductor in a high–quality factor (R)LC resonant circuit, realized on a dielectric wafer.

Spectral coverege vs. critical temp. vs. operating temp.

- KIDs are pair–breaking detectors, the minimum radiation frequency able to break Cooper pairs is $\nu > 2\Delta/h = 73 T_c[K]$ GHz,
- In order to operate the detectors in the non–thermal regime, they must be cooled to a temperature: $T < T_c/5$.
- Example: for W-band (75-110 GHz), we need $T_c \sim 1$ K, and an operation temperature lower than 200 mK.

Kinetic Inductance Detectors – Advantages

The key features that make KIDs an excellent choice for a large range of applications can be summarized as follows:

- KIDs can reach **photon-noise-limited performance** under a low background power.
- KIDs are intrinsically multiplexable and require a few coaxial cables for the bias/readout of hundreds of independent detectors
 - large detector arrays increase the instrument sensitivity,
 - small thermal input on the cryogenic system.

- KIDs do **not** require **complex microfabrication** techniques to be built
 - high detector array yield
 - large detector arrays, with a large number of operational detectors, increase the instrument sensitivity.
- KIDs are robust
 - they are obtained by deposition of a metal, for example Aluminum, on a dielectric wafer, usually Silicon,
 - very resistant to mechanical shock, thermal cycling and radiation.

Kinetic Inductance Detectors – Fabrication

- The microfabrication process is carried out in a cleanroom and involves only a few steps.
- Our KIDs are fabricated at IFN–CNR, in Rome Tor Vergata.

Kinetic Inductance Detectors – MISTRAL @ SRT

MISTRAL: MIllimetric Sardinia radio Telescope Receiver based on Array of Lumped element KIDs

- MISTRAL is a cryogenic camera that houses ~ 415-pixel array of lumped element kinetic inductance detectors (LEKIDs) operating in the W-band (77-103 GHz) and cooled to about 200 mK.
- MISTRAL+SRT features a high-angular-resolution of 12" and a wide (instantaneous) field-of-view (FOV) of 4.2'.

Installation @ SRT: May 2023

Technical & Scientific commissioning: 2024/2025

Summary

Space Balloon-borne

Ground-based

		Design							Measurements]	
Exporimor	Center Freq	Band [CH7]	Array Size	Pixel size	Superconducting	crit. Temp.	oper. Temp	# of	# of working	time response	detector NEP		
Experiment	[GHz]	Banu [GH2]	diameter [inch]	[mm x mm]	material	[K]	[mK]	detectors	detectors	[micro s]	[aW/sqrt(Hz)]		
OLIMPO	150	25 (17%)	3	2.4 x 2.4	Al (30 nm)	1.31	280	23	20 (87%)	~ 30	~ 89	þ t	
	250	90 (36%)	3	2 x 2	Al (30 nm)	1.31	280	39	34 (87%)	~ 30	~ 109		
	350	30 (8.5%)	2	1 x 1	Al (30 nm)	1.31	280	25	23 (92%)	~ 30	~ 83		
	460	60 (13%)	2	0.78 x 0.78	Al (30 nm)	1.31	280	43	43 (100%)	~ 30	~ 178	~	
MISTRAL	90	26 (29%)	4	3 x 3	Ti-Al (10+30 nm)	0.945	200	415	351 (85%)	~ 15	~ 400		
ASI-KIDS	150	25 (17%)	3 (hexagonal)	2.4 x 2.4	Al (25 nm)	1.35	150	37	28 (76%)	~ 40	~ 12		2
COSMO	150	60 (40%)	4	7 x 7	Al (30 nm)	1.31	150	9	8 (89%)	~ 100	~ 100	<u>د</u> [à
	250	90 (36%)	4	7 x 7	Al (30 nm)	1.31	150	9				l III	F
OLIMPO-	2 150	25 (17%)	3	2.4 x 2.4	Al (30 nm)	1.31	280	55				e de la composición de	
(proposa) 250	90 (36%)	3	2 x 2	Al (30 nm)	1.31	280	151				Ē	
	350	30 (8.5%)	2	1 x 1	Al (30 nm)	1.31	280	313	266 (86%)	~ 50	~ 15	<i>.</i> .	
	460	60 (13%)	2	0.78 x 0.78	Al (30 nm)	1.31	280	511				La	

- **Fabrication**: facilities in the clean room at IFN-CNR;
- <u>Other (R&D) activities</u>: polarization-sensitive KIDs, onchip spectrometer, ...

M. Rajteri Transition-Edge Sensors: TES

TES: microcalorimeters that use the transition of a superconducting film as a thermometer →Intrinsic Energy/ Photon-Number Resolution

Rim

www.inrim.it

TUTO NAZIONALE RICERCA METROLOGIC/

INRiM TiAu optical TES over the last 20 years					
Squared size	1-100 µm				
Critical Temperature	50-350 mK				
Detection efficency	85% @ 690 nm				
Max count rate	1 MHz				
Energy range	UV- mid IR				
Energy resolution	0.11 eV @ 0.8 eV (1550nm)				
Resolving Power	> 7				
Number of Pixel	Under development				
Dark counts rate	10 ⁻⁴ Hz				

TES parameters review

 $\Delta E \rightleftharpoons 60 \text{ meV } E/\Delta E \rightleftharpoons 13 @1550nm$

Multiplex readout of TES

> TES array read out:

Superconducting Quantum Interference Device (SQUID)

- Time-division multiplexing (TDM)
- MHz frequency-division multiplexing (FDM)
- Microwave SQUID multiplexing (µMUX)

Appl. Phys. Lett. 111, 062601 (2017)

Drawbacks for VNIR TES readout

- Limited bandwidth TDM/FDM ~10 MHz total bandwidth; μ MUX flux ramp/SQUID modulation;
- <u>Complex fabrication</u>, small/uniform junctions, many steps/materials;
- <u>Large physical footprint</u>, typical readout cell areas > 0.4 mm²
- additional structures needed to reduce crosstalk/pickup

J. Low. Temp. Phys 215, 136–142 (2024)

Kinetic Inductance Current Sensors (KICS)

• Nonlinear current dependence of the kinetic inductance in a superconductor with the current;

• Possibility to realize a current sensor by monitoring the position of the resonance frequency on a LC resonators;

Kinetic Inductance Current Sensors (KICS)

- High bandwidth, able to measure fast VNIR TES signals
- Relatively simple fabrication \rightarrow one NbTiN layer;
- Can potentially be made more compact, integrate on same chip as TES array;

- First demonstration at NIST with a optical W TES;
- Resolution of 0.137 ± 0.001 at 0.8 eV (1550 nm)

but:

• Parallel development started in Italy in collaboration with Unimib, FBK and INRIM for funds from INFN and NQSTI;

Superconducting nanowire single photon detectors (SNSPD)

Gol'tsman et al., Appl. Phys Lett. 75, 705 (2001)

Spectral Range	Vis up to 30 µm				
Max Coun rate	100s MHz				
DE	98%				
DCR	mHz-Hz				
Jitter	10s ps				
Temperature	2K (GM)				
Area	10s µm				

Roma, Area di Ricerca CNR Tor Vergata Rm2

Napoli, Università Federico II

Università degli Studi di Napoli Federico II

G. P. Pepe, L. Parlato, CJ Zhang, C. Bruscino, P. Ercolano, M. Peluso

QKD network

Proceedings in SPIE Optics+Optoelectronics (2025)

In collaboration with:

Quantum optics

IEEE Trans. Appl. Supercond. 34, 2200105 (2024)

Dark Matter research

Matter @ Accelerators (2025)

Towards MIR detection

Infrared Physics & Technology, 141, 105468 (2024)

SNSPD multiplexing

Staff: G. Torrioli, S. Cibella, F. Chiarello, F. Martini, F. Mattioli, A. Gaggero

PhD: M. Gambelli, A. Rengarajan

Facilities

Uninano fabrication center

Napoli, Università Federico II

CORRIEN Istituto di Fotonica e Nanotecnologie

> Area territorial di Ricerca CNR di Roma Tor Vergata Rm2

Stato dell'arte

400K pixels array SNSPD array based on thermally coupled row-column multiplexing architecture

CR ~100 kHz; jitter ~300ps

Oripov et al., Nature 622, 730 (2023)

Conclusions

- Superconducting detectors have proven to be breakthrough technologies in several research fields, and with targeted development, they have the potential to drive a revolution in astronomical and astrophysical instrumentation
- In Italy there is historically a community working on cryogenics and superconducting technologies
- We presented ongoing developments on TES, SNSPDs, and KIDs, that we believe align well with the aims of this workshop. A discussion on the kind of science that INAF considers important to pursue in the post-2040 era can be useful to identify targeted developments to best tailor these technologies to future astronomical needs