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A challenging landscape to imagine and exploit

Relevant scientific cases are hard to imagine 
(targeted exoplanets are completely unexplored or not even found yet!)

The science of the 2040s is contingent on the science of the 2030s 
(providing context to interpret the measurements)

The main competition in the 2040s is with flagship space observatories 
(advances in coronography, interferometry, ultra-low noise detectors)

Main opportunities for ESO 
The ELT will have superior collective area and spectral resolution

ESO will enter the decade at the forefront of exoplanet research


(ANDES and PCS ⇒ generational leap from gaseous to rocky planets)
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Hot-warm giants

and sub-giants

Temperate rocky planets

2020s 2040s

A gap of >3 orders of magnitude in signals

Planet/star contrast 
in reflected light

10–10 (G stars)

10–8 (M stars)

Planet/star contrast 
in thermal emission

10–7 (G stars)

10–6 (M stars)
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High spatial and spectral resolution

R=5k-100k via IFUs or long-slits


down to planet/star contrasts ~10–6 

ESO facilities
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Other 4-8m class
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Expect the unexpected: Hycean worlds
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One possible model solution to the interior-envelope degeneracy (~1.5-2.5 Earth radii)

Potential Hycean planet already within reach of current-gen (space & ground)

Interpretation likely degenerate at very low S/N or spectral resolution

Might need the whole JWST lifetime and some help from ELT/ANDES (2030s)

Highly-contested

claim of DMS in


K2-18b as indicators

of biological activity



Desert, ridge and savanna: the rocky-gaseous transition

Gaseous exoplanets: targeted with current instruments both from 
space (JWST) and via high spectral resolution from the ground

Planets > 1.5 REarth are mostly

gaseous (Rogers, 2015)

The rocky-gaseous transition

can be a consequence of

formation pathways or


atmospheric loss

Rocky exoplanets: only lower limits on mean molecular weight

with current instruments ⇒ ELT science for the 2030s

Transmission signals decrease  
by 8-32× at the transition

(Castro-Gonzáles+23)



The "cosmic shoreline": a science case for the 2030s

Likelihood of retention of rocky planet atmospheres

Pass+25

2 planets (LHS 1140b, L98-59d) already selected for JWST DDT

⇒ measurement limited to secondary eclipse brightness at 15 µm

This is science for the (late) 2030s, probably needs ELT-PCS and 
might need HWO/LIFE to be fully addressed

Rocky planets around M-dwarfs can lose their atmospheres entirely

Combination of super-luminous pre main sequence, XUV fluxes, flaring



ANDES at the ELT (phase B, first light 2032)
High spectral resolution (100,000), 0.5-1.8 µm (0.35-2.5 µm possible)

Spatially unresolved mode: transmission and emission spectroscopy

with cross-correlation techniques (currently photon-limited to 1E-5 contrast)

Extreme AO + IFU + cross correlation:
reflected light of 5 temperate exoplanets around nearby M-dwarfs

Transmission spectroscopy of dozen of exoplanets at the rocky-gas transition

(Pallé+25)(Pallé+25)

5𝜎 detection in 5 transits 5𝜎 detection in 1 transit

N2-O2

CO2



PCS at the ELT (pre-phase A, 203x)
Specs still TBD, but high-res spectroscopy + coronograph + XAO

Extreme contrasts reached with combination of spectral and spatial resolution

(assumed 104 gain from cross correlation)

10–8 contrast at 16 mas  
(3𝜆/D @ 0.8 µm) 

10–9 contrast at 100 mas
(Kasper+21)
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PCS at the ELT (pre-phase A, 203x)
Specs still TBD, but high-res spectroscopy + coronograph + XAO

Extreme contrasts reached with combination of spectral and spatial resolution

(assumed 104 gain from cross correlation)

10–8 contrast at 16 mas  
(3𝜆/D @ 0.8 µm) 

10–9 contrast at 100 mas

PCS can enable comparative characterisation of nearby temperate rocky planets
It can also discover a handful of such planets (still M-dwarf dominated)

(Kasper+21)

PCS discovery space
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Our knowledge of solar system analogues is biased by detection limits

Smaller and further away planets are harder to detect

We need to fill the gap to find real Earth analogues to characterise.
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GAIA (ended, Sozzetti+24) 

~1000 warm and cold giant planets (0.5-5 AU) with 


Data Release 4 (2026)

up to ~10,000 planets with Data Release 5 (date TBD)


Both contingent to pipeline development


Ongoing RV surveys: more gas / ice giants on long orbits (e.g. Bonomo+23)

Extreme Precision RVs: goal of ~10 cm/s to find an Earth-Sun,


already possible on short period planets (e.g. P=11.2 d Proxima Cen, Faria+22).

Astrophysical noise and long-term stability are the main challenges in EPRVs
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Large Interferometer For Exoplanets 
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Reflected light Thermal emission

6-8m mirror 4 mirrors (2.0-3.5m)
Coronograph w/ 10–10 contrast Nulling interferometry



The big space missions of the 2040s
Habitable Worlds Observatory 

(HWO)
Large Interferometer For Exoplanets 

(LIFE)

0.2-1.8 µm, R = 70-200 6-16 µm (4-18.5 µm goal), R = 100
Reflected light Thermal emission

6-8m mirror 4 mirrors (2.0-3.5m)
Coronograph w/ 10–10 contrast Nulling interferometry

Find and characterise ~25 planets similar to the Earth
Identify biomarkers and anti-biomarkers

Measure temperatures and abundances unambiguously



Maximum scientific yield with HWO + LIFE combined

HWO

LIFE

≤10 K uncertainty in surface temperature, ~1 dex uncertainty in gas abundance (Alei+24)
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Achieved 
Main pathways of planet formation and early evolution


Nature of the most common exoplanets (2-4 Earth radii)

Likely incomplete 
Mechanisms shaping the rocky-gaseous transition


Main atmospheric classes of exoplanet atmospheres

Fraction of rocky planets retaining an atmosphere

Unexplored 
Atmospheres of temperate rocky planets including false biomarkers


Earth in context of other potentially habitable planets

Critical aspects of space facilities that is worth considering

Wavelength gap @ 2-3 µm: CH4 difficult to measure, CO impossible 
Known false positives hard to disentangle; Earth through time challenging

Low resolving powers: degeneracy between overlapping species

Small collective areas: long integration, ultra-low noise detectors
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Weaknesses of planned facilities ⇒ opportunities

The obvious facility to exploit is still the ELT
(superior collective power, spectral resolution)

Expansion and/or refurbishment of existing instruments
For both ANDES and PCS, K-band (2-3 µm) capability is not a given

ANDES-IFU: fibre number / density and R constrained by physical detector size
Is 1 o.o.m. push beyond the 10–3 (ANDES) or 10–4 (PCS) contrast at 3𝜆/D feasible?

Are there techniques we can think about from the ground?
e.g. is it crazy ti think about nulling interferometry with ESO facilites in the 2040?


What R&D would we need to plan to make it possible?

Are there scientific cases still unexplored?
e.g. what is the occurrence of planets in other Galactic environments?

Questions? Ideas?

An ELT instrument successor to PCS?


