

Finanziato dall'Unione europea NextGenerationEU

SPECTRA-AI

Spectral Pattern Extraction for Classifying Transient Radiations in Astronomy with Artificial Intelligence

Alberto Garinei, Department of Engineering Science - Guglielmo Marconi University

Spoke 3 :

Sara Cutini - INFN PG

Francesco Longo - Università di Trieste - INFN

Spoke 3 Progetti Bandi a Cascata, 29/05/2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Project Overview

The **SPECTRA-AI** project aims to innovate astronomical observation by applying Artificial Intelligence (AI) to identify and analyze transient astronomical sources using high-energy gamma ray data.

Transient sources, such as gamma ray bursts, supernovae, and solar flares, are crucial for understanding the high-energy universe.

We use data from high-energy gamma-ray experiments, in particular from the Fermi LAT.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical objectives:

• Develop big data processing and visualization tools to manage the large volumes of data.

The Methodologies include the use of Deep Learning architectures for spatial and temporal data analysis:

- Convolutional Neural Networks (CNN) for image analysis
- LSTMs for analyzing photon emission time series

The solutions proposed are aimed at building a unified system capable of automatic detection and real-time classification of transient astronomical events.

Raw Data Analysis:

- Fermipy package analysis (Python)
- Fermitools

With standard tools we get **Photon Counts** and **Exposure Map**, crucial to understand Average Flux from the Universe

This is crucial to understand how the Universe "behaves"

Technical Objectives, Methodologies and Solutions Universe Simulation and NN training:

- 1. Catalog Model Preparation (*fermimodel*).
- 2. Simulation using gtobssim from NASA
- 3. Our Neural Network learns what average fluxes, given photon counts and LAT exposure look like

Anomaly Detection

- Pipeline Architecture. Models:
- 1. Autoencoder
- 2. ConvLSTM

Whenever **new data** is fed into the NN, the system automatically tells you whether that's **Anomaly Signal or not**.

What a Ten Year-simulation looks like

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps & Future Development

• Different time scale:

Simulation carried out over different time windows will allow to spot different time scale anomalies

Different anomaly patterns:

Simulation of anomaly patterns to be tested against our model

Computational Cost Metrics

Develop metrics to assess the computational cost preserving model performance.

Dashboard

User friendly platform to carry out anomaly analysis

Finanziato dall'Unione europea NextGenerationEU

GRAIL

Gamma-Ray Imaging with deep Learning

Alberto Garinei – Department of Engineering Science, Guglielmo Marconi University

Spoke 3 : Fabio Gargano - INFN Bari

Spoke 3 Progetti Bandi a Cascata, 29/05/2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Project Overview

Objective:

Development of an AI-based system for onboard particle classification in space calorimeters.

Challenges:

- 1. High data volume from calorimeters.
- Computational limitations on satellites (power consumption < 5-10W).
- 3. Need for onboard data processing due to limited transmission capacity.

Key Methodologies and Achievements

- 1. Data Reduction Techniques:
- Implemented and evaluated **multiple dimensionality reduction techniques**:
 - Point Cloud, PCA (Principal Component Analysis), ICA (Independent Component Analysis), LDA (Linear Discriminant Analysis)
 - TSNE (t-Distributed Stochastic Neighbor Embedding), UMAP (Uniform Manifold Approximation and Projection), VAE (Variational Autoencoders), Clustering
- Feature Importance with XGBoost emerged as the most effective method: it ensures high classification accuracy in subsequent phases while preserving explainability of the selected features
- Assessed using reference metrics to balance data compression and information retention.

Key Methodologies and Achievements

- 2. Predictive Models Optimization:
- Tested and optimized various machine learning models on the reduced datasets obtained from all dimensionality reduction techniques:
 - CNN (Convolutional Neural Networks), XGBoost, Transformer, MLP (Multilayer Perceptron)
 - Logistic Regression, SVM (Support Vector Machine), Perceptron, GaussianNB (Gaussian Naïve Bayes)
 - Passive Aggressive Classifier, LDA (Linear Discriminant Analysis), QDA (Quadratic Discriminant Analysis)
- Evaluated based on reference metrics for **accuracy and computational efficiency**.
- While several models performed well, **XGBoost** was selected for final deployment due to its **high accuracy, fast inference time**, and its ability to provide **interpretable decision logic** through its tree-based structure

On-Edge Deployment and Real-Time Testing

- Conversion to C for Embedded Execution:
 - Dimensionality reduction and classification models **converted to C** for execution on embedded systems.
 - Developed a script that loads pre-trained models, receives new calorimeter data via serial, and returns real-time predictions.
- Testing on Arduino MKR WAN 1310:
 - Simulated a low-power, resource-constrained environment.
 - Achieved classification in <1s, meeting real-time on-edge processing requirements.

Next Steps & Future Development

Full-scale Model Training

Train models on **100% of available data** using high-performance GPU servers, overcoming current computational limitations (models trained on ~1%). This is expected to improve accuracy from **97% to 99%**.

On-Edge GPU Deployment

Convert and test models for execution on **Jetson Orin Nano (NVIDIA)** to ensure efficient inference on low-power embedded GPUs.

Computational Cost Metrics

Develop metrics to **assess the computational cost** to determine the **optimal number of features** to retain during dimensionality reduction, balancing information preservation with model performance.

Thanks!

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing