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Nuclear Instruments 
Who we are
• an outstanding Italian company
• Team of highly qualified young engineers, physicists, and computer 

scientists (22 people)

Our mission
• Design and develop advanced electronic solutions
• Support cutting-edge scientific experiments

Research areas
• Study of matter’s structure in large colliders
• Astrophysics
• Aerospace
• Nuclear Medicine

Operating model
• Function as a true research laboratory
• Strong focus on innovation

Collaborations
• Partnerships with leading scientific institutions worldwide
• Contributing expertise to advance science and technology in 

strategic, pioneering fields
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Projects in charge of Nuclear Instruments 
• SPARTAN: SPace pARTicle trAcking with Neural-networks

Development of a real-time particle tracker for space applications using machine learning and 
FPGA technology. The project aims to reconstruct particle trajectories with high precision and low 
energy consumption, enabling operation in dense event environments like cosmic radiation 
detectors.

• LEGIMaC: Low-Energy Gamma Imaging via Machine Learning in Calorimeters

Creation of ML algorithms for detecting ultra-low energy gamma events in space calorimeters. 
The focus is on distinguishing scintillation signals from dark noise and resolving event pileup, even 
at high rates, through pulse shape analysis on GPUs and FPGAs



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SPARTAN: What is Particle Tracking?
• Particle tracking is the process of reconstructing the trajectories 

of charged particles as they pass through a detector.

• It allows physicists to determine key properties of particles, 
such as momentum, charge, and origin, by analyzing their paths.

• Charged particles interact with detector materials, leaving 
signals (hits) that are used to map their curved paths, especially 
within magnetic fields.
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Zire payload on Nuses Satellite

3D model of the satellite and of Zirè payload
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Zire payload on Nuses Satellite

FTK Fiber Tracker

M.N. Mazziotta, F.Gargano, R.Pillera, G. Panzarini,
L. Lorusso, A. Liguori 
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Zire payload on Nuses Satellite
• Fiber tracker → recostruction with 

ML
• Low power solutions→ less than

10W 

FTK
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How Neural Networks Identify Particle Tracks

Input: Detector Hits
• Charged particles traversing a detector leave 

behind signals, or "hits," in various detector 
layers.

• These hits are recorded as spatial coordinates, 
representing the particle's interaction points.

Graph Construction
• Each hit is represented as a node in a graph.
• Edges are established between nodes based on 

spatial proximity, forming potential track 
segments. 

Detector Input with possible tracks
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How Neural Networks Identify Particle Tracks
Graph Neural Network (GNN) Processing
• A Graph Neural Network analyzes the constructed 

graph to evaluate the likelihood that connected 
nodes (hits) belong to the same particle trajectory.

• Through iterative message passing between nodes, 
the GNN learns to identify patterns consistent with 
particle tracks.

Track Reconstruction
• Nodes with high confidence scores are selected to 

assemble complete particle trajectories.
• The network effectively filters out noise and 

resolves overlapping tracks, even in dense 
environment

Edge connected each other and possible tracks 

reconstructed by the GNN 
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SageCONV Layers
How GNN Works
• Message Passing: Each node collects ("receives 

messages from") its neighbors.
• Aggregation: The received messages are combined 

using a function (e.g., mean, sum).
• Update: The node’s feature is updated using the 

aggregated information and its own features.

SAGEConv is a GNN layer introduced by GraphSAGE that enables inductive learning: SAGEConv learns a 
transferable aggregation function, enabling it to make accurate predictions on nodes and graphs never seen during 
training.

• Neighbor Sampling: Selects a fixed-size set of neighbors for each node→ scalable to large graphs.
• Aggregation Functions:

•Mean (default): Simple average of neighbor features
•Max, LSTM, or even learned functions for richer modeling

• Update Rule: Combines the node’s own features with the aggregated neighborhood representation
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How Neural Networks Identify Particle Tracks
Aspect Convolutional Neural Networks (CNNs) Graph Neural Networks (GNNs)

Data Structure
Operate on regular, grid-like data 
structures (e.g., images), where spatial 
relationships are fixed.

Operate on graph-structured data, 
accommodating arbitrary sizes and complex 
topologies, ideal for irregular detector 
geometries. 

Application in Particle 
Tracking

Transform detector hits into 2D or 3D 
images; apply convolutional filters to 
detect patterns corresponding to particle 
trajectories. 

Model detector hits as nodes in a graph; use 
message passing to aggregate information 
from neighboring nodes, capturing complex 
spatial relationships. 

Advantages
- Well-established architectures with 
extensive tooling and support. 
- Efficient for data with regular spatial 
structures.

- Naturally handle irregular and sparse data. 
- Adaptable to complex detector geometries. 
- Capture intricate relationships between 
hits. 

Limitations - May struggle with sparse data and 
complex topologies.

- Potentially higher computational 
complexity. - May require more 
sophisticated training and tuning.
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Data Preprocessing Pipeline for Particle Tracking
X layers

Y layers

Pre-Processing

Pre-Processing

Inference

Inference

Clusters

Clusters

Nodes

Edges

Nodes

Edges

Track Fitting
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Data Preprocessing Pipeline for Particle Tracking

Store data on file

DATA

SOURCE

DATA CLEANING

• Remove events with 

insufficient layer 
coverage (less than 
4 layers).

• Drop rows with 
missing values

NODE FEATURES

• Hit positions

• Uncertainties
• Energy deposition
• Layer information 

EDGE CONSTRUCTION

• Create edges by 

connecting hits in 
consecutive layers

• Calculate edge 

features such as 
angular differences 

between hits



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Inference using SageCONV
The SageConv model is a scalable GNN 
architecture built using GraphSAGE convolution 
layers, specifically designed to process particle 
hit graphs across multiple detector layers.

Parameter Value

Input Features 5 per node (e.g., x, z, PE, 
uncertainty, layer)

Output 1 (binary classification: node 
on track or not)

Hidden Size 112 neurons (initial layer)

Number of Layers 7 SAGEConv layers

Feature Reduction 16 units per layer
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How it works
1.Input Graph

•Each node corresponds to a hit.
•Edges connect hits between consecutive detector layers.
•The graph includes geometric and signal-based features.

2.Layer Stack (7x SAGEConv)
•The first SAGEConv maps 5 input features → 112 hidden units.
•Each following layer reduces the hidden dimension by 16 units:

•Layer 2: 112 → 96
•Layer 3: 96 → 80
•…
•Layer 7: 32 → 1 output

3.Activation Functions
•All layers (except the last) apply Tanh to introduce non-linearity.
•Final layer uses Sigmoid to output a value ∈ [0, 1] = track 
probability.

Input Graph

Edge
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Why SAGEConv

• It aggregates neighbor features efficiently using mean or learned functions.

• Perfect for graphs with irregular topology, like sparse particle events.

• Works in inductive mode, so it can generalize to unseen graphs.

• After training, each node's output represents the probability of belonging to a 
particle track.
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Hardware Implementation Strategy
System Architecture

• Hybrid Solution: FPGA + NPU
A mixed architecture combines a Xilinx Zynq Ultrascale+ FPGA 
with an NVIDIA Jetson Orin Nano to optimize the execution of the 
GNN model.

• Functional Roles:

• FPGA (Zynq Ultrascale+) handles:
• Front-end data acquisition
• Preprocessing (e.g., cluster building, filtering)
• Real-time data preparation and formatting

• NPU (Jetson Orin Nano) performs:
• GNN inference (GraphSAGE model)
• Track reconstruction
• Data packaging for acquisition PC

PLMM

Detector

Front end board

NPU/GPU

Concentrator
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Challenges in Full GNN Implementation on FPGA
Architectural Constraints
• Non-pipelined Design: The structure of the SAGEConv-based GNN is not easily pipelined, making it unsuitable 

for direct implementation on pure FPGA without significant performance penalties.
• Resource Usage: The complexity of Graph Neural Networks requires a large number of logic gates and memory 

blocks, which scales poorly with the number of nodes and channels in the graph

Performance Bottlenecks
• Sequential Computation

Unlike CNNs, GNNs require message passing and aggregation steps that are inherently sequential, limiting the 
effectiveness of parallel execution on FPGA.

• Edge Feature Handling
The GNN model processes not only node features but also edge features—an added challenge for logic-based 
hardware without large shared memory and flexible control logic.
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Challenges in Full GNN Implementation on FPGA

Toolchain Limitations
Existing tools like Vitis AI and hls4ml are not fully optimized for implementing complex GNN layers, 
especially when dynamic graph structures and attention mechanisms are involved

Due to the limitations above, a hybrid architecture was chosen: FPGA (Zynq Ultrascale+) for 
preprocessing, and NPU (Jetson Orin Nano) for inference, achieving high throughput and low 
power consumption
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NVIDIA Jetson Orin Architecture
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Inference system: Performance

Zynq UP

Node/Edge 
calculation

Simulation 

output file

Jetson Orin

Inference

ZeroMQ

Flatbuffers
Storage server

(emulating satellite 
PLMM)

ZeroMQ

Flatbuffers

5k pre-processing/sec 10k inference/sec

7W

5W
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Alternative Architecture – 2D CNN for Particle Tracking
Concept:
• Replace the graph-based approach with a 2D convolutional neural 

network (CNN) that processes detector data as image-like arrays.
• Each detector layer is treated as a 2D plane of pixels: (N x N) matrix.

Input Representation:
• A 4-channel image, where each channel corresponds to one detector 

layer.
• Active pixels represent either:

Advantages:
• Compatible with HLS4ML, allowing direct synthesis on FPGA.
• Standard CNN architectures are simpler to deploy and optimize on 

embedded systems.

• Fiber intersection over threshold, or
• Actual pixel hits (in pixelated detectors).
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2D CNN for Particle Tracking
CNN Structure Description
• The CNN is designed to process 4 detector layers simultaneously, each treated as a 

32×32 pixel image.
• The model follows a U-shaped encoder-decoder pattern (though shallow), typical of 

segmentation tasks:

Encoder:
1. Conv2D (4 → 16 channels)

Captures local patterns across each layer.
2. ReLU Activation
3. Conv2D (16 → 32 channels)

Learns higher-level features combining all layers.
4. ReLU Activation

Decoder:
1. Conv2D (32 → 16 channels)

Begins reconstruction to match the input resolution.
2. ReLU Activation
3. Conv2D (16 → 4 channels)
4. Output: 4-channel mask with sigmoid-activated values indicating track probabilities.

Conv2D 4→16

ReLU

Conv2D 16→32

ReLU

Conv2D 4→16

ReLU

Conv2D 16→32

Input 4x32x32

Sigmoid

Output 4x32x32
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Alternative Architecture – 2D CNN for Particle Tracking
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LEGIMAC: What is Pile-up
• Pile-up occurs when multiple events happen too close in time for the detector to resolve them as separate.

• Instead of recording distinct pulses, the system sees a single distorted or merged signal.

Challenge Effect

Energy reconstruction

The total signal is not a linear 

sum of the two → energy is 
overestimated

Timing resolution
The peak shifts → wrong 

estimation of arrival time

Counting accuracy

You may count one event 

instead of two, especially if 
one is low energy

Pulse shape distortion

Makes it harder to distinguish 

real signals from noise or 
background
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LEGIMAC: What is Pile-up
• LEGIMaC aims to detect ultra-low energy gamma events in space.

• These are frequent and closely spaced, especially during bursts or cosmic showers.

• Pile-up dramatically reduces:  Detection sensitivity, Spectral resolution, Trigger efficiency

Use machine learning, especially neural networks, to:
• Deconvolve overlapping signals

• Identify and separate individual events

• Reconstruct true amplitude and timing of each pulse
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SuperMuSR Detector at ISIS
We use data from the SuperMuSR experiment as a realistic 
benchmark:

• Setup: Muon spectrometer at the ISIS pulsed neutron and 
muon source.

• Detector: Fast scintillators coupled to SiPMs (Silicon 
Photomultipliers).

• Environment: Muons arrive in well-defined bursts (up to 
MHz), producing rapid chains of interactions in the sample.

Why it’s relevant:

• Mimics the burst-like, impulsive nature of space radiation 
LEGIMaC targets.

• Provides a rich dataset with real pile-up cases to train and 
validate algorithms.



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hardware platform

• Digitizer: Nuclear Instruments  DAQ121
• 4x FPGA: Zynq Ultrascale +  XCZU7EV
• Operating clock frequency: 250 MHz
• Operating sample rate: 1 GSPS
• Channels per digitizer: 32
• Integrated 4x4 cores ARM64 CPU with EPICS and 

Kafka directly running on the device
• 4 Gbps connectivity on copper 
• 10 Gbps on fiber
• 32 + 4 LVDS
• 24 x TTL Lemo I/O
• Integrated LV generator
• Integrated BIAS generator up to 80V
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Deconvolution algorithm
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CNN-1D
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CNN-1D
Model Objective
• Analyze 1D waveforms of length 1024 samples.
• Detect and separate overlapping pulses (pile-up).
• Output a probability mask over time: where each sample likely contains a 

valid signal.
Layer Type Description
conv1 Conv1D(4) 5-point convolution, 4 filters — learns edge & slope patterns

relu1 ReLU Introduces non-linearity with reduced bit-width

conv2 Conv1D(8) 3-point convolution, 8 filters — captures short-range interactions (optional dilation)

relu2 ReLU
conv3 Conv1D(16) Deeper layer with 16 filters — models overlapping or decaying tails
relu3 ReLU
conv4 Conv1D(8) Reduces back to 8 filters — focuses on compressed representation
relu4 ReLU
output Conv1D(1) Final 1x1 convolution — returns per-sample score

sigmoid Sigmoid Converts score to [0, 1] probability (signal present vs. noise)
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Training
Modelized data

Noise Time 

Distribution

Read Data

Classic 

trigger
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HLS4ML
• hls4ml is an open-source tool that converts trained neural networks into synthesizable firmware for FPGAs

and ASICs, using High-Level Synthesis (HLS).

• It bridges the gap between machine learning frameworks (like Keras, PyTorch, QKeras) and hardware 
description languages (like VHDL or Verilog), enabling ML deployment on edge devices with limited power and 
latency constraints.

• Unlike GPU/CPU/NPU inference engines, hls4ml transforms the model into a true hardware architecture —
not a software process

• A custom, dataflow-pipelined architecture, fully tailored to the neural network. Neural network becomes a real 
circuit, like a digital filter or FSM

• No CPU cores, no external memory access, no generic ML accelerator Inference happens clock-by-clock, at the 
speed of the FPGA fabric.

• Fully pipelined: One result every N clock cycles 



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

LEGIMAC user case
• Quantized with Qkeras

• Compiled via hls4ml  → Vitis Backend

• Deployed as hardware logic inside a Xilinx Zynq Ultrascale+ FPGA

Keras Model

hls4ml

C++ HLS

Netlist

Bitstream
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LEGIMAC HLS Implementation
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LEGIMAC HLS Implementation

A
D

C

JESD 204B FRAMER

A
D

C
A

D
C

SCINTILLATOR TRIGGER

Neural Network 

CONTROLLER
Neural Network

AXIS
ILA
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LEGIMAC HLS Implementation

LUT 3.5%

RAM: 18.2%

DSP: 11.3%

Clock Frequency: 250 MHz
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LEGIMAC HLS Output

INPUT

OUTPUT
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LEGIMAC HLS Timing

DATA

LOAD

DATA

OUTPUT

Output interval 1:6

Input interval 1:1

Total = 1024 + (1024 * 6) + overhead = 7500 clock cycles  → 30us (clock 250MHz) = 34000 inference/s

4 engine x FPGA = 135 k inference/s → 135Msamples/s
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LEGIMAC HLS Output Input is Time rescaled 1:6 to match output pipeline cycle

INPUT

OUTPUT
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LEGIMAC Processed Output
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LEGIMAC Realtime and low latency

INPUT

OUTPUT

First ADC Sample of the spill First Result

700 clock cycles → 2.8us
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LEGIMAC HLS Implementation

330mW for 35000 inference/s!!!
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Comparison with GPU
Model RAM Inference/s Power

FPGA Implementation 257 kbytes 34000 0.35W

GTX4060 30 Mbytes / 8Gb 30000 100W

Jetson Orin Nano 30 Mbytes / 4Gb 11500 5W
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