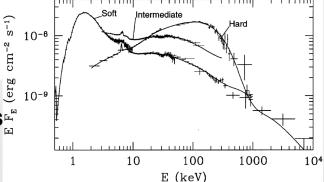


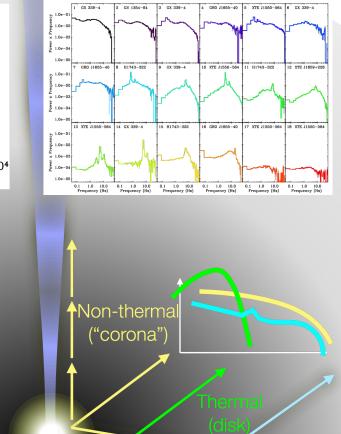
Finanziato dall'Unione europea NextGenerationEU

High Performance Stingray: Fast Spectral Timing for All Eleonora Veronica Lai, Matteo Bachetti, Maura Pilia, +Daniela Huppenkothen and Stingray developers

Third Technical Meeting Spoke 3, Perugia May 26-29, 2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing




Scientific Rationale

- Some observe spectra, some observe variability. Is possible to use the full information?
- Example: a variable accretion flow that propagates through an atmosphere (corona), that illuminates the accretion disk and gets reflected. Can we disentangle the emission regions?
- Stingray: ease the learning curve for advanced spectral-timing techniques, with a correct statistical framework

Huppenkothen et al. (2019) Bachetti et al. (2024)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

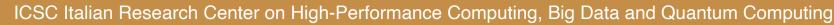
Technical Objectives, Methodologies, and Solutions: what is able to do

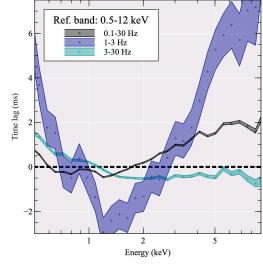
•"Timing" analysis

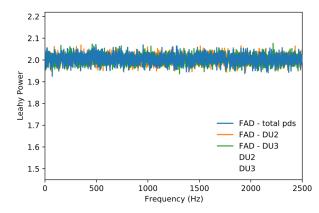
- Pulsation searches and timing
- Aperiodic variability, periodogram modelling (ML, Bayesian)

Spectral analysis -> connect to Xspec, Sherpa

- Continuum modeling
- Broad lines (e.g. Fe complex, cyclotron lines)


Polarimetry


•Spectral-timing techniques:


- Time/Phase lags
- Coherence
- Covariance
- etc.

... all with instrument awareness

- Be aware of instrumental systematics: dead time, frame time, good time intervals, etc.
- Mission support

Technical Objectives, Methodologies, and Solutions: an open development model

- Github-based workflow:
 - Issue tracking
 - Assignments
 - Pull Requests
- Community outreach:
 - Public Slack channel
 - Talks
 - Hackatons/Tutorials
 - OpenAstronomy involvement
 - Astropy affiliated package
- Developers:
 - Astronomers
 - Google Summer of Code students

0	StingraySoftware / stingray		Q Type 🛛 to search	<u>≻</u> + • ⊙ n ⊖
de	ি Issues 50 ়া Pull requests 12 ি	Discussions 🕑 Actions 🗄 Projects 2 🕮 Wiki	🛈 Security 🗠 Insig	hts 🕼 Settings
	Stingray Public	🖈 Edit Pins	 ✓ Unwatch 20 	⁹ / ₈ Fork 123 ▼ ¹ / ₁₄ Star 150 ▼
	🐉 main 👻 🐉 23 branches 🛇 12 tag	Go to file Ac	id file ▼	About ®
	📦 matteobachetti Merge pull request #764 from StingraySoftware/weighte 📖 🗸 17fbaf@ 2 days ago 🗿 3,417 commits			Anything can happen in the next half hour (including spectral timing made easy)!
	.github/workflows	Add slow tests with basic dependencies only	2 weeks ago	C ² stingray.science/stingray
	docs	Add changelog	3 days ago	
	ioss 📔	Try to fix mess with htest	2 years ago	timeseries time-series astronomy astrophysics data-analysis blackhole
	🖿 stingray	Fix docstrings [docs only]	2 days ago	x-ray-binaries hacktoberfest
	validation	Move here TOA validation	6 years ago	fourier-analysis x-ray time-series-analysis pulsars
	🗅 .gitignore	Add a couple patterns to gitignore	2 months ago	fourier-transform neutronstars
	🗋 .gitmodules	Integrate StingrayDocs repository contents	3 years ago	blackholes
	CHANGELOG.rst	Fix changelog	5 months ago	🛱 Readme
	CODE_OF_CONDUCT.md	Create code of conduct [skip ci]	6 years ago	গ্রু MIT license জি Code of conduct
	CONTRIBUTING.md	Fix broken links [docs only]	2 months ago	Activity
	CREDITS.rst	Fixed with John's suggestions.	last year	☆ 150 stars
	LICENSE.rst	Added changed LICENSE and tox files	3 years ago	20 watching
	MANIFEST.in	Changes done till Step 13/17	3 years ago	양 123 forks Report repository
	README.rst	Fix Slack link in README	2 months ago	

SpecTemPolar! PRIN INAF 2019

DI ASTROFISICA

TUTO NAZIONALE

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SnakeViz

Reset Root

Sunburst

15

Actions

All workflows

changelog check-changelog

CI Tests

Build & publish documenta

New workflo

O Filter workflow runs

3 hours ago

🖑 3m 47s

3 hours ago •

1 2 days ago •

🖑 1m 25s

Ħ 2 days ago

Ö 14m

2 days ago

🕑 3m 16s

🖑 16m 5s

Actor -

main

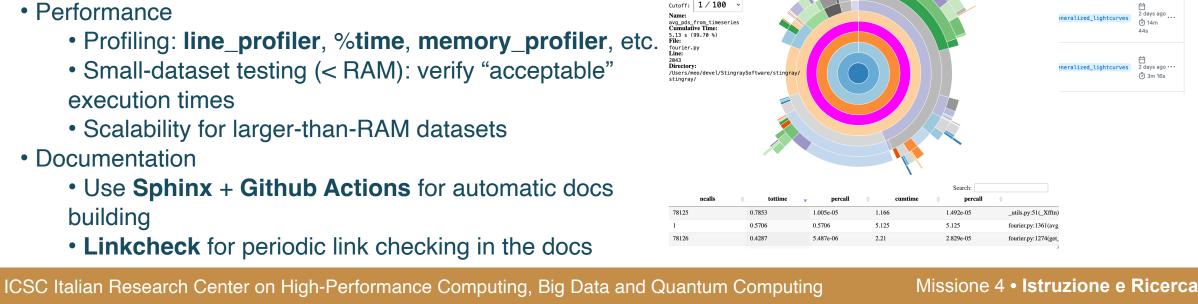
All workflows

1.224 workflow runs

Event - Status -

Docs checks

Docs checks #216: Scheduled


Call Stack

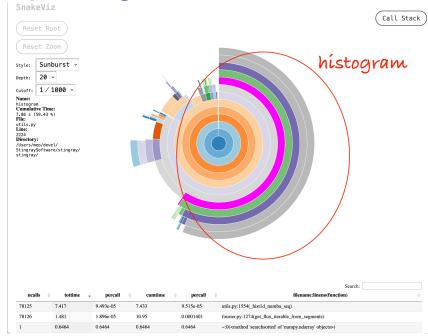
Branch -

Showing runs from all workflows

Technical Objectives, Methodologies, and Solutions: reliability and performance testing StingraySoftware / stingray ull requests 12

- Code correctness
 - Test-based development
 - Literature reproduction
- Regression testing: continuous integration with Github Actions and tox
 - Unit tests
 - Integration tests
- Performance
 - Profiling: line_profiler, %time, memory_profiler, etc.
 - Small-dataset testing (< RAM): verify "acceptable" execution times
 - Scalability for larger-than-RAM datasets
- Documentation
 - Use Sphinx + Github Actions for automatic docs building
 - Linkcheck for periodic link checking in the docs

Main Results


LARGE data sets (> 32GB)

1.Data loading

2.Parallelisation

SMALL data sets (< 32GB)

1. GPU porting

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Main Results: LARGE data sets (> 32GB)

1. Data loading

Let's be "lazy": lazy loading with FITSTimeseriesReader

Now, let's try not to even pre-load the events. What will happen? First of all, we use the new class **FITSTimeseriesReader** to lazy-load the data, meaning that the data remain in the FITS file until we try to access them. This occupies very little memory.

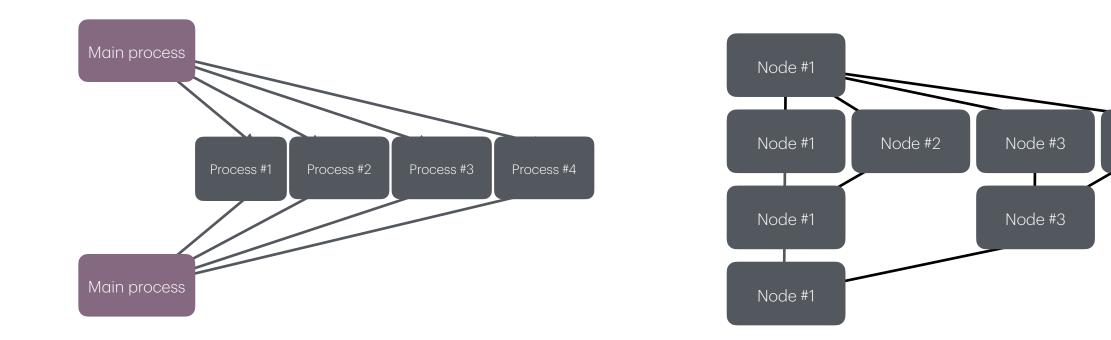
[16]: from stingray.io import FITSTimeseriesReader
%memit fitsreader = FITSTimeseriesReader(fname, data_kind="times")

peak memory: 2245.34 MiB, increment: 0.00 MiB

[17]: from stingray.gti import time_intervals_from_gtis
 start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)
 %memit interval_times = np.array(list(zip(start, stop)))

peak memory: 2245.36 MiB, increment: 0.00 MiB

Let's create an iterable that uses the FITSTimeseriesReader to send AveragedPowerspectrum the pre-binned light curves for each segment. Events will be read in chunks from the FITS file, and streamed as light curve segments on the fly.


MPI

Main Results: LARGE data sets

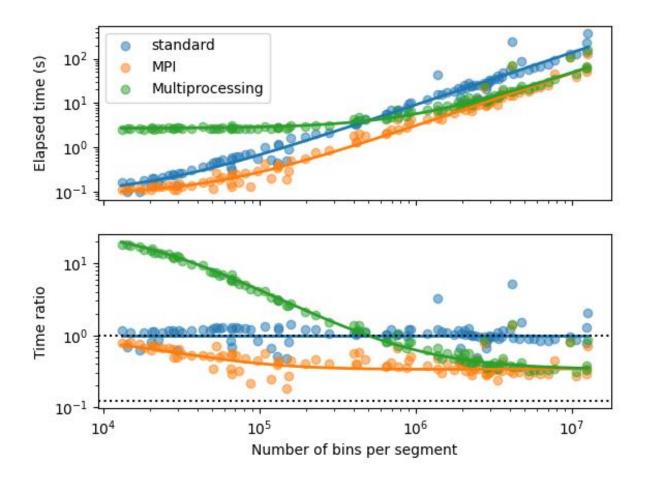
2. Parallelisation

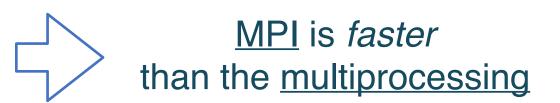
Multiprocessing

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

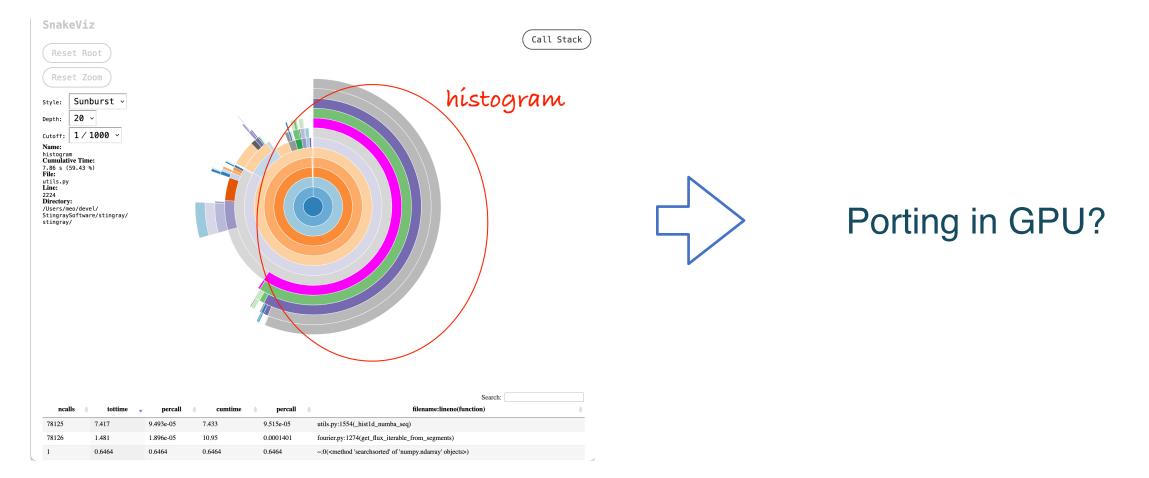
Missione 4 • Istruzione e Ricerca

Node #4

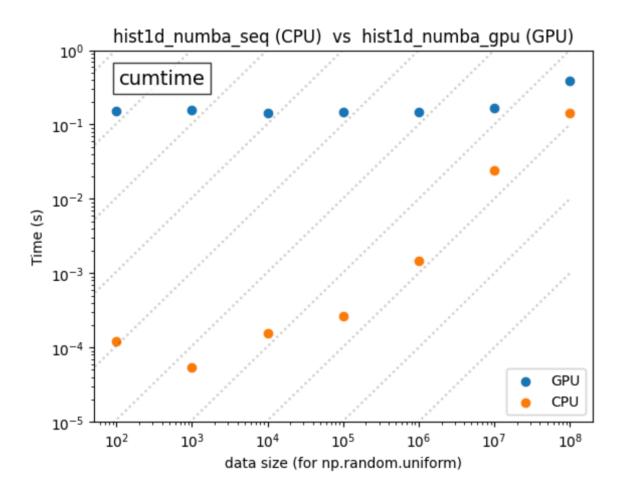




Main Results: LARGE data sets



Main Results: SMALL data set (< 32GB)

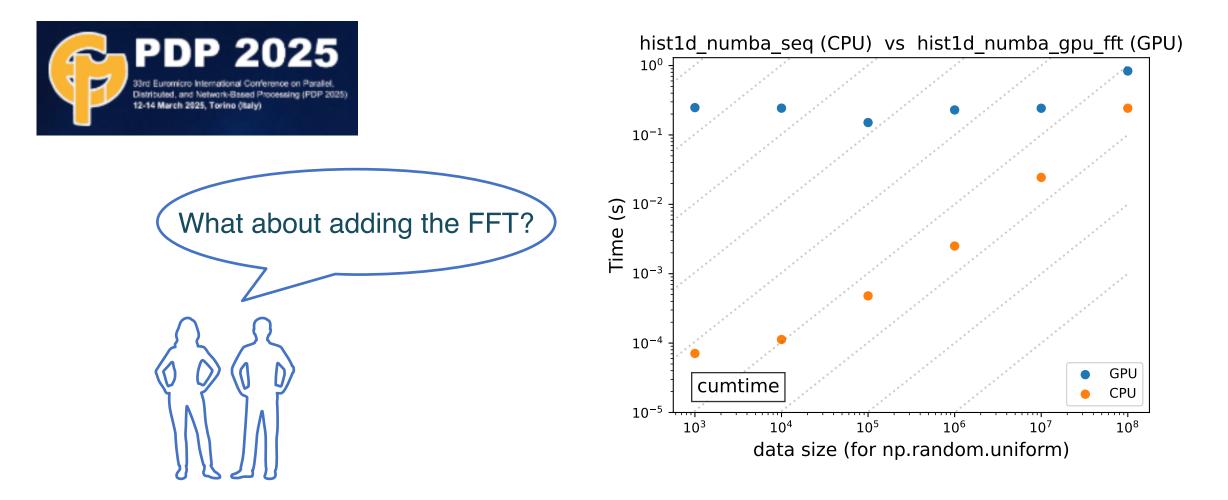


Main Results: SMALL data set (< 32GB)

Porting in GPU?

Not convenient :(

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Main Results: SMALL data set (< 32GB)

Conclusions and final steps

LARGE data sets (> 32GB)

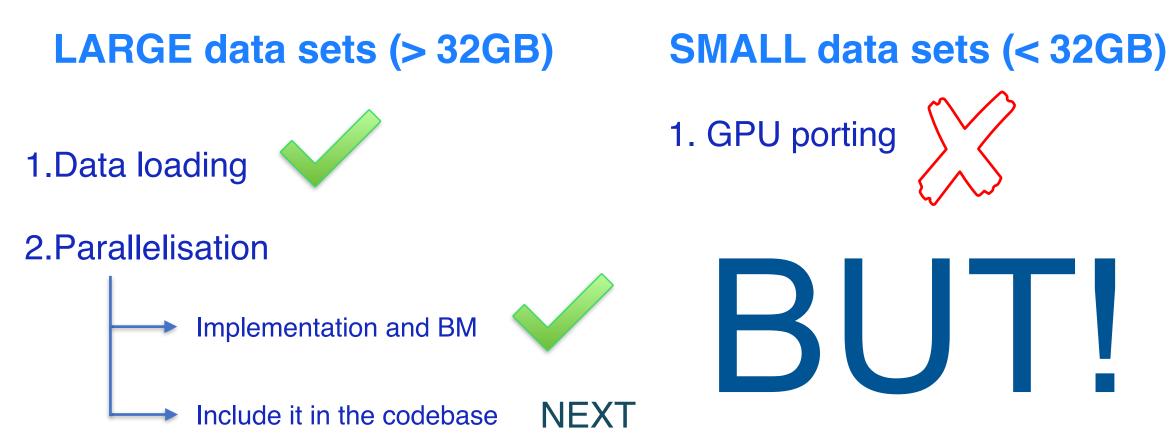
1.Data loading

2.Parallelisation

Include it in the codebase

SMALL data sets (< 32GB)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Conclusions and final steps

Conclusions and final steps: future for Stingray

Spectral timing in Julia

DESCRIPTION

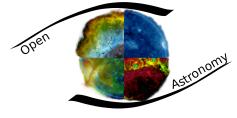
The analysis of time series from astronomical observations in the X-rays is an excellent tool to test advanced physical theories. Of particular interest are the periodicities that are often observed in the X-ray signals coming from the surroundings of accreting black holes, and the evolution of the rotation period of neutron stars. The essential toolbox for X-ray timing analysis includes different kinds of periodograms, cross spectra, and a number of "variability vs energy spectra", that allow to understand the variability at different energies. This project is about the implementation of a basic set of X-ray timing analysis operations in Julia, continuing the porting of the core operations from the (stingray) Python package [initiated

MILESTONES

Coding starts

- Gain familiarity with the codebase
- Apply existing analysis to simulated datasets

1st evaluation


- Implement a series of tests in Julia that the new code will have to pass
- Extend basic operations (periodograms and cross spectra) to event lists and light curves
- Time lags and coherence spectra

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Matteo Bachetti, **Fergus Baker** and Kashish Shrivastav

GSoC 2025 with OpenAstronomy

IUI


GSOC COLLABORATING PROJECTS stingray iuliaAstro

INITIATIVES

REQUIREMENTS

Julia knowledge

TAGS

Spectral timing in

Julia

Understanding Python code

DIFFICULTY medium

PROJECT SIZE

350 h

MENTORS

@matteobachett @stefanocovino @fjebaker

