
OAVDA

PaGUSci: Parallelization and Porting to GPU
of scientific codes

Loriano Storchi, Paolo Campeti, Nicolo’ Antonini,
Massimiliano Lattanzi

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Spoke 3 III Technical Workshop, Perugia 28 Maggio, 2025

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Step 1: CAMB code profiling:

The profiling data show that __cambmain_MOD_doflatintegration is called 23,614 times, so that while
the average time spent in this function per call is low, it is called frequently, which contributes to its high
total time. This allowed us to identify the main loop responsible for most of the computational burden:

file cmbmain.f90:
272 do q_ix=1,ThisCT%q%npoints
273 call SourceToTransfers(ThisCT, q_ix)

Indeed the same loop has been already parallelized using OpenMP (via an OMP PARALLEL DO).
And Indeed an important portion of the total (up to 90% depending on the input) time is related to this
“Main_Task”.

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Step 2: define a proper input

The profiling data show that the function __cambmain_MOD_doflatintegration takes up most of the
time

But considering the total wall time taken (few seconds) we could not expect an intesrestin g beneefts
coming from the GPU porting

We established three possible input scenario: LOW, MEDIUM, HIGH

CINECA Leonardo Serail code Total Wall time (s.) Main_Task Wall Time (s.)

LOW 27.28 1.41

MEDIUM 618.70 472.93

HIGH 6383.00 6158.81

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Step 3: compile the code using NVIDIA/PGI compiler

To initially simply compile the CAMB code we have been forced to quite a wide code
refactoring/duplication because of many hacky and/or non fully standard code

Unlike C, Fortran does not enforce left-to-right evaluation nor short circuiting

call C_F_PROCPOINTER(c_funloc(fin), f) in MathUtils.f90

 if (.not. allocated(ajl) .or. any(ubound(ajl) <
[num_xx, max_ix])) then

if (.not. allocated(ajl) .or. any(ubound(ajl) < [num_xx, max_ix])) then

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Step 4: Porting of the Main_Task to the GPU

Various issues , first instance clearly we need
to well define all the data that is needed reason
why:

1. Changed subroutines and functions API
2. Moved methods to standalone

functions/subroutines
3. Minimize the code in the GPU
4. Because of something wrong in how the

polymorphic types are getting set up in a
few of the OpenMP regions

 if (.not. allocated(ajl) .or. any(ubound(ajl) <
[num_xx, max_ix])) then

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Main Results

- Inline with the timescale we have a first GPU running version of the CAMB code ported to GPU

Running CINECA Leonardo PRELIMINARY LOW

Total Wall Time (s.) Main_Task Time (s.) Main_Task Speed
up

Overall Speed up

OpenMP 32
threads (CPU)

1.61 0.09 15.45 16.95

OpenACC (GPU) 17.79 0.53 2.67 1.53

Expected
OpenMP/OpenA
CC (CPU/GPU)

2.05 0.53 2.67 13.34

Maximum numerical difference with respect to the serial code 0.26%

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Main Results

- Inline with the timescale we have a first GPU running version of the CAMB code ported to GPU

Running CINECA Leonardo PRELIMINARY MEDIUM

Total Wall Time (s.) Main_Task Time (s.) Main_Task Speed
up

Overall Speed up

OpenMP 32
threads (CPU)

33.13 26.96 17.57 18.67

OpenACC (GPU) 103.59 14.55 32.51 5.97

Expected
OpenMP/OpenA
CC (CPU/GPU)

20.76 14.55 32.61 29.8

Maximum numerical difference with respect to the serial code 0.04%

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Main Results

- Inline with the timescale we have a first GPU running version of the CAMB code ported to GPU

Running CINECA Leonardo PRELIMINARY HIGH

Total Wall Time (s.) Main_Task Time (s.) Main_Task Speed
up

Overall Speed up

OpenMP 32
threads (CPU)

348.38 329.67 18.68 18.32

OpenACC (GPU) 316.34 141.84 43.42 20.18

Expected
OpenMP/OpenA
CC (CPU/GPU)

160.53 141.84 43.42 39.76

Maximum numerical difference with respect to the serial code 0.04%

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Main Results

- Started profiling the GPU code tested on several platforms/GPUs

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Final Steps

Try to find possible workarounds to have the OpenMP (multi CPU) part of the
code running using the PGI/NVIDIA compiler (or other compilers)

Fine tuning of the OpenACC part (profiling and test already on going)

Porting also of the Non-Flat geometry

Building a training set to be used by NN models (mass production)

