

Finanziato dall'Unione europea NextGenerationEU

Machine Learning Techniques for Space Calorimeter Experiments Maria Bossa, Federica Cuna, Fabio Gargano

Referee: Gianpaolo Carlino (INFN Sezione di Napoli), Pasquale Lubrano (INFN Sezione di Perugia)

Spoke 3 Technical Meeting, Perugia 26-29/5, 2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

Primary cosmic rays are mostly high-energy protons and nuclei, with a small fraction of electrons (<1%). Measuring the electron component is challenging due to its low abundance—up to 1,000 times less than protons—and requires efficient proton rejection. We present a novel classification approach using machine learning techniques to distinguish electron- and proton-induced events

HERD experiment as testbench

- ➢ HERD is a future space mission for:
 - the direct detection of cosmic rays up to 1 PeV
 - the measurement of the electron and positron flux up to several tens of TeV
- It consists of homogeneous, isotropic, and deeply segmented 3D calorimeter, surrounded by multiple sub-detectors for charge, timing, and tracking measurements.

Data Simulation

- The full dataset is generated using the custom HerdSoftware simulation framework
- It consists of 4,300,000 events, equally divided into 2,150,000 electron events and 2,150,000 proton events.
- Both events sets are simulated within a power-law energy spectrum E⁻¹, spanning an energy range from 100 GeV to 1 TeV and from 1 GeV to 100 GeV
- Tracks are distributed within a spherical region surrounding the HERD detector.

Choice of features

We tested a new set of features, these include:

• Lateral moment of the shower until 4° order

 $M_{lateral}(n) = \frac{\sum_{i} E_{i} \cdot d_{i}^{n}}{\sum_{i} E_{i}},$

Where E_i is the energy deposited in the i-th pixel, d_i is the distance of the <u>i-th</u> activated pixel from a reference axis, which in our case is the shower axis.

• Longitudinal moment of the shower until 4° order

 $M_{long}(n) = \frac{\sum_{i} E_i (\bar{d} \cdot (\bar{x} - x_0))^n}{\sum_{i} E_i},$

where \bar{d} is the directional vector, which in our case has been chosen as the primary direction, x_i is the i-th activated pixel, x_0 is a reference point, that corresponds to the starting point of the shower.

Longitudinal profile of the shower

Each hit is projected onto the shower axis. The axis is split into 10 equal-length segments. In each segment, the deposited energy from hits within a fixed radius is summed. The energy is then normalized by the segment length, yielding the energy density along the shower axis.

Lateral moments: Energy range 1GeV-100GeV

6

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Longitudinal moments – Energy range 1 GeV- 100 GeV

7

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Longitudinal Profile – Energy range 1 GeV- 100 GeV

Lateral moments - Energy range 100GeV-1TeV

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Longitudinal moments – Energy range 100 GeV- 1 TeV

10

ICSC Italian Research Center on High–Performance Computing, Big Data and Quantum Computing

LongitudinalProfile[9] Value

Electrons - LongitudinalProfile[3]

80

80

Electrons - LongitudinalProfile[7]

Protons - LongitudinalProfile[7]

Protons - LongitudinalProfile[3]

60

60

Longitudinal Profile – Energy range 100 GeV-1 TeV

LongitudinalProfile[8] Value

11

XGBoost algorithm

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Completed objective

•Increase statistics: collect a larger amount of simulated data to improve the statistical significance and reliability of the results. DONE

•Extend the dynamic range of the simulation: broaden the range of energy range simulated to ensure the model captures a wider variety of scenarios and events. DONE

•Integration with tracking: combine the simulation data with tracking algorithms to enhance the precision and completeness of the analysis. ON GOING

Current development

We are currently experimenting with a **Visual Transfomer** using the coordinates of the activated pixels and the corresponding deposited energy. This requires a hyperparameter search with Optuna. Given the size of dataset, we need to parallelize the optimization, which is not a trivial task

Using Leonardo Hub

Cjupyterhub Home Token Admin De mbossa [+ Logout]		Cjupyter <mark>hub</mark> Home Tok	en Admin	
 Server Options Minimal environment To avoid too much bells and whistles: Python and Scipy. 				 Server Options Minimal environment To avoid too much bells and whistles: Python and Scipy.
Pytorch environment If you want the additional ML bells and whistles: Python, and pytorch.				 Pytorch environment If you want the additional ML bells and whistles: Python, and pytorch.
Pytorch Offload Pytor CPU and Memory Image Other image	rch Jupyterlab session on a GPU node at Leonardo supercomputer Small (16 CPU, 64GB Memory) xLarge Memory (32 CPU, 256GB Memory) default Image			 Pytorch on Leonardo HPC Offload Pytorch Jupyterlab session on a GPU node at Leonardo supercomputer CPU and Memory Small (16 CPU, 64GB Memory) Image V default Image Enter image manually Other image
	Start			Start
Choice of CPU memory			Choice of image	

Cascade fundings

Moreover, we are also involved in the cascade funding projects under the supervision of Fabio Gargano:

- AI-Legs in collaboration with *Università Parthenope*
- LEGIMAC in collaboration with *Nuclear Instruments*
- GRAIL in collaboration with UniMarconi

These projects focus on the discrimination of low-energy gamma rays at different levels using artificial intelligence techniques and on the possibility of porting these codes onto FPGAs

Finanziato dall'Unione europea NextGenerationEU

Thank you for your attention

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing