

Finanziato dall'Unione europea NextGenerationEU

CANDELA – ITHACA s.r.l.

standard **CAN**dle-based **D**istance **E**stimation with Learning Algorithms Andrea Lessio, Virginia Ajani, Martina Giovalli , Paolo Viviani, Vanina Fissore Beatrice Bucciarelli, Sibilla Perina, Deborah Busonero

Spoke 3 III Technical Workshop, Perugia 26-29 Maggio, 2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

- ESA Satellite Gaia has delivered a massive amount of data (DR3 ~ 10 TB)
- Other data sources e.g. OGLE, INAF OATO plates archive, rich of information

- Leverage advantages of machine learning/deep learning techniques to extract useful information encoded in the data
- Goal: development of algorithms and models using learning techniques for estimating astronomical parameters (e.g. parallax, distance) for the analysis of data from the Gaia space satellite for different types of distance indicators (RR Lyrae, Cepheids) and data (catalogs, photometric series, astronomical plates)
- **ITHACA s.r.l** has expertise in big data processing, image processing and machine learning techniques

• Input: Gaia DR3, OGLE catalog, astronomical plates from INAF-OATO

• **Output**: generalized distance estimation with learning algorithms

Current status and next steps

Month	1	2	3	4	5	6	7	8	9	10	11	12	/13/	//14//
WP1 - Model with Cepheids catalog	Х	х	х	х										
WP2 - Study of uncertainties propagation				Х	Х	Х	х	Х	Х	X	X	X //		
WP3 - Model with RR Lyrae catalog							х	Х	Х	X	X	(
WP4 - Identify INAF-OATO plates of interest				Х	Х	Х								
WP5 - Object detection on plates, enrich input								Х	Х	Х	Х	Х	X	X
				MS1		MS2					MS	3, MS4		MS5
										45				
										We	are her	e 29 of	May 20)25

Ask for <u>two months extension</u>, project end shifted from end August 2025 → end October 2025

- MS1 ightarrow Identification of ML/DL for Cepheids catalog \checkmark
- MS2 \rightarrow List of interesting AOIs within INAF-OATO plates \checkmark
- MS3 → Methodology on uncertainty propagation on the inputs and on intrinsic of the model (65%)
- MS4 → Extension of the ML/DL model to RR Lyrae (40%)
- MS5 \rightarrow Enrichment of input dataset with detected object in interesting plates from INAF-OATO, generalised model (40%)

WP1: Identification and development of a ML/DL model, including analysis of photometric time series and stellar parameters, for inference of distance of Cepheid-type standard candles. Validation on a reference dataset provided by INAF-OATO.

 Input: GAIA DR3 Cepheids catalog | comparison among standard ML models, Gaussian Process Regressor (GPR) - first implementation to identify model on parallax

Full dataset	MSE	R^2
$\frac{\sigma_{\pi}}{\pi} < 5\%$	0.01215	0.94085
$\frac{\ddot{\sigma}_{\pi}}{\pi} < 7\%$	0.00961	0.94673
$\frac{\sigma_{\pi}}{\pi} < 10\%$	0.00318	0.95160
$\frac{\ddot{\sigma_{\pi}}}{\pi} < 20\%$	0.01132	0.89983

-> GPR implementation provides better perforance metrics, and allows to include error propagation and correlation among features

• Input: GAIA DR3 Cepheids catalog, MLP neural network

- MLP provides the best combination of performance metrics (still need to include the error treatment)
- What we really want as output is not the parallax, but the distance of a given Cepheids →

Madore B. 1982 + Ripepi et al. 2019

Technical Objectives, Methodologies and Solutions, WP1

• <u>Next step</u>: validate **output distances**

WP2: Study of the propagation of uncertainties for the class of models (i.e., deep neural networks, recurrent neural networks) of interest, with the aim of providing an accurate estimate of the uncertainty on the predicted distance

• Error propagation from the construction of the target to the GPR model:

- GPR \rightarrow allows to take into account that the amount of noise (variance) in the data varies across different input values. In practice: add σ_{π} or σ_{abl} to the diagonal of the kernel matrix during fitting
- Neural Network, MLP → does not take into account uncertainty out-of-the-box. Monte-carlo sampling is being evaluated to propagate the uncertainty on the input values, then it will be complemented with other techniques (e.g. Monte-Carlo dropout, to estimate the intrinsic model uncertainty)

WP3: Extension, fit of the model developed in WP1 to standard RR Lyrae type candles. Validation with a reference dataset provided by INAF

WP4: Identification of areas of interest using existing catalogs and visual inspection of astronomical plates and .fits images provided by INAF-OATO.

Positional cross-match between OATO astronomical plates catalog and GAIA cepheids

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Plate 7189: visual inspection

WP5: Identification of interesting objects (e.g. Cepheids, RR Lyrae) in the INAF-OATO plates to further enrich the standard candle catalogs with complementary information and generalize the developed algorithm to a different input dataset.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Main results

Model GPR	5	%	7%	6	10%		
	MSE	R^2	MSE	R^2	MSE	R^2	
w/ G, BP, RP $\pi > 0$	0.00104	0.9662	0.00122	0.9517	0.00203	0.9239	_
w/o G, BP, RP $\pi > 0$	0.00128	0.9619	0.00138	0.9524	0.00250	0.9191	
w/ G, BP, RP $\pi > 0$ with error	0.00105	0.96878	0.00111	0.9618	0.001456	0.9530	
w/o G, BP, RP $\pi > 0$ with error	0.00115	0.96578	0.00117	0.9596	0.001486	0.9521	

Comparison with test dataset (cut 7%) 0.8 Distance predicted [kpc] 6 ABL prediction 9.0 5 4 3 2 0.2 0.0 + 0.0 0 0 2 3 Δ 5 6 7 0.2 0.4 0.6 0.8 1.0 Distance test set [kpc] ABL test set

Model 1 - ML → GPR for Cepheids with error propagation without G, BP, RP magnitudes in training

Next step → MLP with error propagation

Main results

- List of interesting plates with matches:
- 1373 plates with Cepheids matches
- **763** plates with more than one Cepheid match
- 49 detected interesting object with astrometric calibration in WP5 for plate 7189, field with LMC

Plate 7189

Object: LMC (campo A) Telescope: GPO-ESO Epoch: 31-05-1992 Site: La Silla Optical design: Refractor

Statistics	of	residuals
count	1.	907000e+03
mean	9.	382927e-15
std	1.	541988e-01
min	-1.	129944e+00
25%	-8.	124337e-02
50%	2.	666663e-04
75%	6.	833642e-02
max	1.	421636e+00

Final Steps

WP1: first candidate model identified, GPR with error propagation without G, BP and RP magnitude in training 🗸

WP2: extend uncertainty propagation to MLP neural network + incorporate photometric series with LSTM + obtain results with MLP for distance

WP3: extend model to RR Lyrae catalog -> apply Model 1 and MLP to RR-Lyrae reduced datasets

WP4: list of AOIs plates matching Gaia catalog provided to INAF OATO 🗸

WP5: interesting objects in plates found in WP4, calibration performed for one plate → extend for other plates + convert plate epoch into GAIA epoch and extend light curve

Finanziato dall'Unione europea NextGenerationEU

Thank you for your attention!

Spoke 3 III Technical Workshop, Perugia 26-29 Maggio, 2025

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ADDITIONAL SLIDES

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Gaussian Processes

 $f(\vartheta) \sim GP[\mu(\vartheta), K(\vartheta, \vartheta')],$

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu \\ \mu_* \end{bmatrix}, \begin{bmatrix} K(\vartheta, \vartheta) + \sigma_n^2 \mathbb{I} & K(\vartheta, \vartheta_*) \\ K(\vartheta_*, \vartheta) & K(\vartheta_*, \vartheta_*) \end{bmatrix} \right),$$

$$\mu_{\star} = \mu \left(\vartheta_{\star}\right) + K \left(\vartheta_{\star}, \vartheta\right) \left[K \left(\vartheta, \vartheta\right) + \sigma_{n}^{2} \mathbb{I}\right]^{-1} \left(f - \mu \left(\vartheta\right)\right),$$

$$\Sigma_{\star} = K \left(\vartheta_{\star}, \vartheta_{\star}\right) - K \left(\vartheta_{\star}, \vartheta\right) \left[K \left(\vartheta, \vartheta\right) + \sigma_{n}^{2} \mathbb{I}\right]^{-1} K \left(\vartheta, \vartheta_{\star}\right).$$

With the kernel in our case defined as $K(x_i, x_j) = \exp^{-\frac{d(x_i, x_j)^2}{2\ell^2}}$

Neural network - MLP

MLPs are a kind of Artificial (Deep) Neural networks that use all-to-all connectivity between the neurons of hidden layers.

They can perform both classification and regression tasks (like in this case), and they work by iteratively minimising the value of a loss function, that is typically a metric of the distance between a "ground truth" value and a "predicted" value.

Although they do not provide built-in uncertainty estimation, several techniques have been explored to achieve it with DNNs. For instance

Propagation of input uncertainty: Monte-carlo sampling augments the dataset by sampling input data from a normal distribution with avg and stddev. This provides a distribution of the output values that represents the propagation of the error.

Model intrinsic uncertanty quantification: Monte-carlo dropout (<u>https://proceedings.mlr.press/v48/gal16.html</u>) randomly "turns off" some neurons, providing a distribution of the output that is correlated to the uncertainty of the model itself.

