

UNIVERSITY of the WESTERN CAPE

PRoybing the Cosmological Principle with weak lensing shear

James Adam Collaborators: Roy Maartens, Chris Clarkson, Julien Larena [arXiv:2411.08560], JCAP02(2025)016

Roy's Clandestine Birthday Workshop, 10 March 2025

Introduction

- Homogeneity and isotropy on large scales is foundational to modern cosmology
- Some dark energy, modified gravity models lead to large-scale anisotropies
- Fundamentally, this assumption must be tested
- Renewed interest in anisotropic cosmologies (e.g. SN la measurements, CMB dipole)
 - \implies Can use weak lensing to probe anisotropies
- Formalism developed by Pitrou, Pereira, & Uzan to estimate B-mode shear generated by anisotropies: [arXiv:1503.01125], [arXiv:1503.01127]
- Incorporate non-linear corrections and tomography into results of Pitrou et al. and quantify possible SNR for Euclid

Lensing Formalism

Lensing distortions

Jacobi matrix

• Observed angular size \mapsto physical separation

 $\xi^A |_S \propto \mathcal{D}^A_{\ B} \theta^B |_O$

Lensing distortions

Jacobi matrix

 Observed angular size → physical separation

 $\xi^A|_{\varsigma} \propto \mathcal{D}^A_{\ B} \theta^B|_O$

Shear:

• Weak lensing: κ , $\gamma \ll 1$ and $\dot{\psi} = \mathcal{O}(\gamma^2)$ \implies Ignore rotation (usually)

E-modes, B-modes, and multipoles

• Expand κ in spherical harmonics

$$\kappa = \sum_{\ell,m} \kappa_{\ell m} Y_{\ell m}$$

 Expand γ in spin-weighted spherical harmonics

$$\gamma^{\pm} = \gamma_1 \pm i \gamma_2 = \sum_{\ell,m} (E_{\ell m} \pm i B_{\ell m}) Y_{\ell m}^{\pm 2}$$

- E =even parity, B =odd parity
- No B-modes on large scales (FLRW)*

°000

°00

Anisotropic Spacetime

Bianchi-I universes

Metric

$$\mathrm{d}s^2 = a^2(-\mathrm{d}\eta^2 + \gamma_{ij}\mathrm{d}x^i\mathrm{d}x^j)$$

- $a = \text{scale factor}, \gamma_{ij} = \text{spatial metric}$
- Hubble rate: $\mathcal{H} \equiv \frac{a'}{a}$

• Spatial shear:
$$\sigma_{ij} \equiv \frac{1}{2}\gamma'_{ij}$$

Dark Energy

$$T_{\mu\nu}^{de} = (\rho_{de} + P_{de}) u_{\mu} u_{\nu} + P_{de} g_{\mu\nu} + \prod_{0.4} u_{0.4}$$

Anisotropic stress

- EoS: $P_{de} = -\rho_{de}$
- Anisotropic stress model: $\Pi^{i}_{\ j} \propto \Omega_{de} W^{i}_{\ j}$

Evolution

0.8

0.6

0.2

0.0+ 0.0

0.5

1.0

z

1.5

2.0

2.5

0.0

Weak shear limit and perturbation scheme

Perturbed metric

$$\begin{split} \mathrm{d}s^2 &= a^2 \big[-(1+2\Phi) \mathrm{d}\eta^2 + 2\bar{B}_i \mathrm{d}x^i \mathrm{d}\eta \\ &+ (\gamma_{ij}+h_{ij}) \mathrm{d}x^i \mathrm{d}x^j \big] \end{split}$$

Perturbation scheme

- Treat $\sigma_{ii}/\mathcal{H} \ll 1$ as perturbation along with scalar-vector-tensor (SVT) perturbations
- SVT: Φ, Bⁱ $h_{ii} = -2\Psi\left(\gamma_{ii} + \frac{\sigma_{ii}}{24}\right) + 2E_{ii}$
- Two-fold perturbation {*n*, *m*} for shear and SVT*:

FI RW

SVT

Results

- Angular power spectra of the form $C_{\ell} \sim \ell^4 \int \frac{\mathrm{d}\chi}{\chi^2} P(k) T_{\varphi}^2(\chi,k) \big|_{k=\ell/\chi}$
- Calculate non-linear matter power spectrum P_m^{NL} with HaloFit
- Rescale transfer function $T_{\varphi} \longmapsto c_{NL} T_{\varphi}$
- Non-linear factor $c_{NL} = \sqrt{P_m^{NL}/P_m^L}$
- Smooth interpolation from linear to non-linear regimes
- Better understand limits of validity for predictions

- Lensing projects/flattens observables
- Tomography regains some projected info.
- Reduce noise and error
- Euclid:
 - \circ 10 equi-populated bins $10^{-3} \le z \le 2.5$
 - Weight underlying distribution n(z) with photometric error p_{ph}(z_p|z)

Angular power spectra

Order $\{1, 0\}$

- $\gamma \sim \frac{\sigma}{\mathcal{H}}$
- Fully deterministic
 - \implies no power spectrum
- Order $\{0, 1\}$
 - First order in scalars
 ⇒ only E-modes
 - Auto: $C_{\ell}^{EE} \sim \varphi^2$
 - CLASS: P(k), $T_{\varphi}(\eta, k)$, HaloFit
- Order $\{1,1\}$
 - Post-Born couples σ and scalars \implies Non-zero B-modes!
 - Auto: $C_{\ell}^{BB} \sim \left(\frac{\sigma}{\mathcal{H}}\right)^2 \varphi^2$
 - Cross: $\langle E_{\ell m} B^*_{\ell \pm 1 m'} \rangle \sim \left(\frac{\sigma}{\mathcal{H}} \right) \varphi^2$ \implies off-diagonal (parity)

Angular power spectra

Order $\{1, 0\}$

- $\gamma \sim \frac{\sigma}{\mathcal{H}}$
- Fully deterministic
 - \implies no power spectrum
- Order $\{0, 1\}$
 - First order in scalars
 ⇒ only E-modes
 - Auto: $C_{\ell}^{EE} \sim \varphi^2$
 - CLASS: P(k), $T_{\varphi}(\eta, k)$, HaloFit
- Order $\{1, 1\}$
 - Post-Born couples σ and scalars \implies Non-zero B-modes!
 - Auto: $C_{\ell}^{BB} \sim \left(rac{\sigma}{\mathcal{H}}
 ight)^2 arphi^2$
 - Cross: $\langle E_{\ell m} B^*_{\ell \pm 1 m'} \rangle \sim \left(\frac{\sigma}{\mathcal{H}} \right) \varphi^2$ \implies off-diagonal (parity)

 C_{ℓ}^{BB} likely too small to detect :(\implies Use cross-correlation!

E-B cross-correlation

- Cross-corr. to BipoSH:
 - $\langle EB\rangle\longmapsto {}^{EB}\mathcal{A}_{\ldots}^{\cdots}$
- $\mathcal{P}_{\ell M} \sim {}^{EB} \mathcal{A}_{\ell,\ell \pm 1}^{2M} / \ell^{4.5}$ fully captures anisotropy
- Simple estimator $\hat{\mathcal{P}}_{\ell M}$ \implies Compute SNR:

$$\left(\frac{S}{N}\right)^2 \sim \sum \left(\frac{\mathcal{P}_{\ell M}}{\Delta \mathcal{P}_{\ell M}}\right)^2$$

• SI variance:

$$\left(\Delta \mathcal{P}_{\ell M}
ight)^2 = \mathsf{Var}\left(\hat{\mathcal{P}}_{\ell M}
ight)_{\mathsf{SI}}$$

• What about $\langle EE \rangle$? \implies Lower SNR!

l

Signal-to-noise

Conclusion

Summary

- Lightning review of lensing formalism
- Applied perturbation scheme and results Pitrou et al.
 incorporated tomography and non-linear corrections
- Use *E-B* cross-correlations in order to constrain late-time anisotropic expansion
- Should construct appropriate estimators for cross-correlations

Outlook

- Weak lensing is of immense importance to upcoming surveys
- \bullet Currently looking at cross-correlating CMB κ with cosmic shear B-mode
- Hope to place constraints on σ/\mathcal{H} at the percent level

Questions?