Primordial non-Gaussianity: from forecasts to data Matilde Barberi Squarotti

March 11th 2025 - Cosmic Roy and the General Roylativitis

Primordial non-Gaussianity

- Primordial non-Gaussianity of local-type: f_{NI}^{loc}
 - Insights on inflation and on the dynamics of Early Universe
 - Single-field inflation: $f_{\rm NI}^{\rm loc} \sim 0$
 - Multi-field inflation: $f_{\rm NI}^{\rm loc} \sim 1$
- Theoretical threshold to reach: $\sigma_{f_{\rm NII}} \sim 1$
- Current constraints from CMB: $\sigma_{f_{\rm NI}} \sim 5$ [*Planck* Collaboration; Akrami et al. (2018)]

[Dalal et al. (2008), Matarrese et al. (2008), Slosar et al. (2008), Castorina et al. (2019), Cabass et al. (2022), D'Amico et al. (2022), Maldacena (2003), Creminelli (2004)]

PNG imprints on the LSS

- tracer t (t=galaxies, HI,...)
 - First order PNG bias: $b_{\phi,t}(z) = 2\delta_c (b_{1,t}(z) p)$ with p = 1, 1.6 from the universality relation

•
$$\delta_{t,\text{PNG}}^{(1)}(k,z) \propto f_{\text{NL}}^{\text{loc}} \frac{b_{\phi,t}(z)}{k} k^{-2}$$

Second order PNG bias: $b_{\phi\delta,t}(z) = b_{\phi,t}(z) + 2 \left\{ \delta_{c} \left[b_{2} \right] \right\}$

•
$$\delta_{t,\text{PNG}}^{(2)}(k,z) \propto f_{\text{NL}}^{\text{loc}} \frac{b_{\phi\delta,t}(z)}{k^{-2}} k^{-2}$$

- Non vanishing primordial matter bispectrum
- Current constraints from LSS
 - $\sigma_{f_{\rm NL}} \sim 15$ [Cagliari et al. (2023)]
 - $\sigma_{f_{\rm NI}} \sim 9$ [DESI Collaboration; Chaussidon et al. (2024)]

Scale dependent biases due to the coupling of short and long scale density modes of a dark matter

$$_{2,t}(z) - \frac{8}{21} \left(b_{1,t}(z) - 1 \right) \right] - b_{1,t}(z) + 1$$

The power spectrum

The power spectrum

 $P_{tt'}(k,z,\mu) = \left| b_{1,t}(z) + b_{\phi,t}(z)\mathcal{M}^{-1}(k,z)f_{\rm NL} + f(z)\mu^2 \right| \left| b_{1,t'}(z) + b_{\phi,t}(z)\mathcal{M}^{-1}(k,z)f_{\rm NL} + f(z)\mu^2 \right| P_{\rm m}(k)$

General setup

Galaxy survey

- Stage-IV spectroscopic survey
- Redshift range covered with different ELG types [Fonseca, Camera (2020)]
- Flux limit: $F_c = 2 \times 10^{-16} \,\mathrm{erg \, s^{-1} \, cm^2}$
- Sky coverage: $f_{\rm skv} = 0.36$
- Shot noise
- 12 redshift bins for $z \in [0.85, 4.0]$

In collaboration with S. Camera, **R.Maartens** [arXiv:2307.00058]

HI intensity mapping survey

- SKAO-like survey
- Sky coverage: $f_{\rm skv} = 0.48$
- Beam damping
- Simulated signal loss at low k_{\parallel}
- Thermal noise

• 10 k bins for $k \in [k_{\min}(z), k_{\max}(z)]$

•
$$k_{\min}(z) = 2 \pi V^{-1/3}(z)$$

• $k_{\max}(z) = 0.08 (1 + z)^{2/(2 + n_s)} h \,\mathrm{Mpc}^{-1}$

Multi-tracer technique

- Large scales: cosmic variance limited
- Multi-tracer technique: combination of independent tracers of the same underlying matter distribution to overcome cosmic variance [Seljak (2008)]

Data vector \bullet

$$\mathbf{P} = \left\{ P_{\rm gg}, P_{\rm gH}, P_{\rm HH} \right\}$$

• Analytical covariance matrix [Karagiannis et al. (2024)]

$$\begin{aligned} \mathsf{Cov}\left(\mathbf{P},\mathbf{P}\right) &= \frac{2}{N_{\mathrm{m}}} \begin{bmatrix} \tilde{P}_{\mathrm{gg}}^{2} & \tilde{P}_{\mathrm{gg}}\tilde{P}_{\mathrm{gH}} & \tilde{P}_{\mathrm{gH}}^{2} \\ & \frac{1}{2} \left(\tilde{P}_{\mathrm{gg}}\tilde{P}_{\mathrm{HH}} + \tilde{P}_{\mathrm{gH}}^{2} \right) & \tilde{P}_{\mathrm{gH}}\tilde{P}_{\mathrm{HH}} \\ & & \tilde{P}_{\mathrm{gH}}^{2} \\ & & \tilde{P}_{\mathrm{HH}}^{2} \\ & & \tilde{P}_{\mathrm{HH}}^{2} \end{aligned}$$

• Multi-tracer likelihood [Viljoen et al. (2020]

$$\mathscr{L}_{\text{MT}}^{\text{tot}} = \mathscr{L}_{\text{MT}}^{\text{overlap}} + \mathscr{L}_{\text{gg}}^{\text{non-overlap}} + \mathscr{L}_{\text{HH}}^{\text{non-overlap}}$$

Analysis and results

- Free parameters: $\{f_{NL}, n_s, b_{1,g}(z), b_{1,H}(z)\}$
- All fiducial parameters recovered and constrained
- Constraining power more than doubled with respect to the single-tracer analyses
- Marginalized uncertainty on $f_{\rm NL}$ from multi-tracer analysis: $\sigma_{f_{NII}} = 0.76$
 - Constraints on the dynamics of the primordial Universe
 - Discrimination between inflationary models

Let's move to data!

eBOSS DR16 quasar sample

- High redshift sample: 0.8 < z < 2.2
- 343708 quasars in total
- Two disjoint patches:
 - North Galactic Cap (NGC): 2924 deg^2
 - South Galactic Cap (NGC): 1884 deg^2
- Linear weight for angular systematics

[Ross et al. (2020), Lyke et al. (2020)]

In collaboration with M. S. Cagliari, K. Pardede, G. D'Amico, E. Castorina [arXiv:2502.14758]

Measurements

Power spectrum monopole

- Linear *k*-bins
 - $3.75 \times 10^{-3} < k [h/Mpc] < 0.25$
 - $\Delta k = k_{\rm f}$
- FKP weights: $P(k) \propto \langle \delta_{FKP}(k) \delta_{FKP}(-k) \rangle$ • $w_{\text{FKP}}(z) = \frac{1}{1 + n(\overline{z})P_{\text{fid}}}$
- Optimal weights: $P(k) \propto \langle \tilde{\delta}(k) \delta_0(-k) \rangle$

•
$$\tilde{w}(z) = b(z) - p$$

• $w_0(z) = D(z) \left[b(z) + \frac{f(z)}{3} \right]$

Bispectrum monopole

- All triangle configurations
 - 0.0057 < k[h/Mpc] < 0.075
 - $\Delta k = 3k_{\rm f}$
- FKP weights: w_{FKP}
- Data compression through Single Value \bullet Decomposition

$$\begin{bmatrix} N_{\text{tri}} \end{bmatrix}$$
$$\tilde{B} = B \cdot R$$
$$\begin{bmatrix} N_{\text{SVD}} \end{bmatrix} \begin{bmatrix} N_{\text{tri}}, N_{\text{SVD}} \end{bmatrix}$$

$$N_{\rm SVD} = 9$$

- Power spectrum and bispectrum joint analysis
- $P_{0,qso}(k)$ and $B_{0,qso}(k)$ both modeled at tree level
- Corrections to the model (both for $P_{0,aso}(k)$ and $B_{0,aso}(k)$)
 - Window convolution \bullet
 - Integral constraints ullet
- Full volume analysis: computation of the effective redshift for $P_{0,aso}(k)$ and $B_{0,aso}(k)$
- NGC and SGC separately and then jointly

[Wilson et al. (2015), Beutler et al. (2019), de Mattia et al. (2019)]

- Covariance matrix estimated from the EZ realistic mocks
- Analysis performed using Hamiltonian Monte Carlo chains (HMC)
- Free parameters: $\{f_{NL}, b_1^P, b_1^B, b_2, b_{s^2}, FoG, SN\}$

- Covariance matrix estimated from the EZ realistic mocks
- Analysis performed using Hamiltonian Monte Carlo chains (HMC)
- Free parameters: $\{f_{NL}, b_1^P, b_1^B, b_2, b_{s^2}, FoG, SN\}$

Wide uniform prior

- Covariance matrix estimated from the EZ realistic mocks
- Analysis performed using Hamiltonian Monte Carlo chains (HMC)
- Free parameters: $\{f_{NL}, b_1^P, b_1^B, b_2, b_{s^2}, FoG, SN\}$

Linear bias for $P_{0,qso}(k)$ and $B_{0,qso}(k_1, k_2, k_3)$: correlated priors

- Covariance matrix estimated from the EZ realistic mocks
- Analysis performed using Hamiltonian Monte Carlo chains (HMC)
- Free parameters: $\{f_{NL}, b_1^P, b_1^B, b_2, b_{s^2}, FoG, SN\}$

Second order biases: uniform priors

- Covariance matrix estimated from the EZ realistic mocks
- Analysis performed using Hamiltonian Monte Carlo chains (HMC)
- Free parameters: $\{f_{NL}, b_1^P, b_1^B, b_2, b_{s^2}, FoG, SN\}$

Finger of God parameters: uniform priors

1 for $P_{0,qso}(k)$ + 1 for $B_{0,qso}(k_1, k_2, k_3)$

- Covariance matrix estimated from the EZ realistic mocks
- Analysis performed using Hamiltonian Monte Carlo chains (HMC)
- Free parameters: $\{f_{NL}, b_1^P, b_1^B, b_2, b_{s^2}, FoG, SN\}$

Shot Noise parameters: uniform priors

1 scale independent SN parameter for $P_{0,qso}(k)$

1 scale independent SN parameter for $B_{0,qso}(k_1, k_2, k_3)$

1 scale dependent SN parameter for $B_{0,qso}(k_1, k_2, k_3)$

Results

- We reach $\sigma_{f_{\rm NIL}} \sim 13$, with an improvement up to $\sim 16\%$ with respect to the same analysis performed with P only
- Including the bispectrum with $\Delta k = 3k_{\rm f}$ rebinning is more constraining than the compressed bispectrum
- The sample is noise dominated: limited improvement with respect to forecasts

Towards radio-optical synergies

- Spectroscopic surveys
 - DESI observations and analysis ongoing
 - Euclid started surveying the sky

Credits: ESA, Euclid Consortium

Towards radio-optical synergies

- Spectroscopic surveys
 - DESI observations and analysis ongoing
 - Euclid started surveying the sky
- Hi intensity mapping
 - SKAO precursors taking data and setting the \bullet stage for the SKAO (e.g. MeerKLASS)

Towards radio-optical synergies

500

Matilde Barberi Squarotti

Internal cross-correlations of the **MeerKLASS** 2021 Lband data set

0.16 0.18 0.20 0.22 0.24 $k \ [h \, {\rm Mpc}^{-1}]$