

Prospects for detection of extragalactic magnetar giant flares tails with future Xand gamma-ray satellites

Edoardo Arrigoni

PhD supervisor: Sandro Mereghetti

TUTO NAZIONALE DI ASTROFISICA ONAL INSTITUTE FOR ASTROPHYSICS

Istituto di Astrofisica e Fisica Cosmica di MILANO

Bologna, 08 May 2025

Magnetar Giant Flares

- 2 components
 - Spike: large scale magnetic reconnection, $10^{44} \text{ erg} < E_{iso} < 10^{47} \text{ erg}$, harder spectrum
 - Pulsed tail: Trapped fireball, $E_{\rm iso} \sim 10^{44} {\rm erg}$, softer spectrum but measured only above ~20keV (fit with BB, thermal bremsstrahlung)

How many?

- Galactic observations:
 - 3 MGF in 50 years
 - Large statistical uncertainties
- Extragalactic MGF candidates:
 - IPN observations over the last 30 years (complete over the whole sky above $2 \ 10^{-6} \text{ erg/cm}^2$)
 - Using galaxies star formation rate as tracer for the number of magnetars
 - Bayesian analysis to reconstruct energy distribution

with parameters (see Pacholski et al., 2024):

 $k = 5.7^{+5.2}_{-3.6} \cdot 10^{-2} \text{ yr}^{-1} (M_{\odot}/\text{yr})^{-1}, \ \gamma = 1.97 \pm 0.24$

 10^{-1} $[\mathrm{yr}^{-1}(\mathrm{M}_{\odot}/\mathrm{yr})^{-1}]$ 10^{-2} R(>E₁₅₀) 10^{-3} 10

Orphan tails 600 - 1 500 Initial spike is geometrically 400 beamed 300 Not always oriented towards ms 200 our telescopes 31.25 100 Pulsed tail (orbiting trapped 0 . fireball) visible from any direction Counts 600 $R(>E_{\rm ISO})$ underestimated by • 500 factor $B = \Omega/4\pi$ 400 300 The three galactic MGF tails showed similar properties despite 200 🗄 significantly different spikes: $R_{\text{tails}} = R_{\text{MGF}}(>10^{44} \text{erg}) \cdot B$ 100 🗄 0

0

Guidorzi et al., 2004: light curves of 2001 flare (top) and 1998 giant flare (bottom) from SGR1900+14 observed with BeppoSAX

E. Arrigoni, Bologna, 08 May 2025

MGF tail model: light curve

- Evaporating fireball model for MGF ullettail light curve envelope (see Thompson & Duncan, 2001)
- SGR 1806-20 (27 December 2004) event parameters

•
$$L(t) = L_0 [1 - (t/t_{evap})]^{a/(1-a)}$$
,
with $L_0 = 10^{42} \text{ erg/s}$,
 $t_{evap} = 382 \text{ s}$, $a = 0.6$

• Steeper than exponential decay for $t \to t_{evap}$

MGF tail model: spectrum 100

- MGF tail spectrum measured in [20,100] keV range
- Multiple models in agreement
 - Thermal bremsstrahlung ● $kT \sim 22 \text{ keV}$
 - Blackbody $kT \sim 8 \text{ keV}$, double Blackbody (2BB)
- Extrapolation yields different photon fluxes in softer bands

	10	
dS/dE [ph/cm ² /s/keV]	10^{-1}	
	10 ⁻²	
	10 ⁻³	
	10^{-4}	
	10^{-5}	
	10 ⁻⁶ 1(

MGF light curve in M82

- Coded mask instruments can detect initial spike up to tens of Mpc
- MGF light curve at $D \sim 3.6$ Mpc
 - Tail visible with long observation time and low significance (2σ in figure)
 - Only significant after spike trigger
 - We have to observe in softer energy band

	10^{6}	[
Rate [cts/s]	10^{5}	
	10^{4}	
	10^{3}	· · //
	10^{2}	
	10^{1}	
	10^{0}	1

Swift/XRT simulated observation

- Typical tail in M82 with absorption $N_H = 5.4 \ 10^{20} \ \mathrm{cm}^{-2}$
- Assumptions:
 - Spectrum: Thermal bremsstrahlung lacksquarekT = 22 keV
 - Pulsed fraction: f = 0.45, Period: lacksquarePer = 5s
- XRT parameters:
 - Time resolution Photon Counting mode lacksquare~2.5 sec
 - Energy band: [0.3,10] keV

Blind search

- Look for MGF tails independently of spike detection
 - Promising for large B values
- Trade off between sensitivity and field of view
- Assuming $B \sim 500$, uniform sky ulletcoverage and SFR distribution from Leroy et al., 2019 below 20 Mpc

 10^{7} 10^{6} over 4π 10^{5} 10^{4} Rate[(yr) 10^{3} 10^{2} 10^{1} 10^{0}

Blind search

- EP, SXI: large FoV but low sensitivity
- Swift, Chandra, XMM, eXTP: small FoV but high sensitivity
- WEDGE: more balanced design
- Less sensitive instruments detections are more dependent on observational strategy
- Not enough to confirm MGF origin
 - GRB afterglow / extended emission

SrJ

Blind search: pulsations detection

1.2

- Look for periodicity as distinguishing feature
 - Significant detection if χ^2 with less than 1% of being caused by noise with epoch folding

- Much more restrictive condition
- Expected 0.2 yr^{-1} pulsation detections from best performing telescopes (WEDGE)
- 1.0 0.8 0.6 0.4 0.2 0.0 10^{-1}

pulsation detection

Targeted search

- Follow up of candidate spike detection, need for fast repointing satellites
- Significant detection at several Mpc even after 300s
- At large distances ($\gtrsim 40$ Mpc) only the brightest spikes are visible $(\gtrsim 10^{46} \text{ erg})$
- Assuming $T_{\text{slew}} = 100 \text{ s up to ~2}$ detection per year expected (eXTP)

10 max

Targeted search

- Pulsation detection is more challenging
- Can be achieved for MGF in M82 by telescope with XMM sensitivity and Swift repointing capabilities
 - eXTP can do that! (~1 event per 3 year)

Conclusions

- Detection of pulsations fundamental to correctly identify MGF •
- Blind searches (untriggered by detection of initial spikes):
 - Can take advantage isotropic emissions tail, but high sensitivity instruments have small FoV
 - Telescopes like WEDGE could observe 1 pulsed tail every ~5 years
- Targeted searches:
 - Only spikes oriented towards us give a trigger: Large FoV at gamma-rays needed (e.g. coded mask cameras like SVOM/ECLAIRs, THESEUS/XGIS)
 - But rapid follow up in X-ray range needed (e.g. $T_{\rm slew} \lesssim 100 \, {
 m s}$ with focusing telescopes, 1 pulsed MGF tail per ~3 year with eXTP

Thanks for your attention!

EXTRA SLIDES

MGF energy distribution

MGF rate parameters optimised with Bayesian analysis on

$$N_{12} = k \frac{\gamma - 1}{E_{min}^{1 - \gamma} - E_{ma}^{1 - \gamma}}$$

- SFR measures from Leroy et al., 2019
- $k = 5.7^{+5.2}_{-3.6} \cdot 10^{-2} \text{ yr}^{-1} (\text{M}_{\odot}/\text{yr})^{-1}, \ \gamma = 1.97 \pm 0.24$
- \tilde{k} normalisation for rate per magnetar (not unit of SFR)

•
$$N_{\rm mag}^{\rm MW} = 30$$
, SFR^{MW} = 1.85 $M_{\odot} {\rm yr}^{-1}$

X ray telescopes: Blind search numbers

	Sky fraction inside FoV	Energy band [keV]	Bkg flux [cnts/s]	Source flux at T=0s [cnts/s]	Transients [events/yr]	Pulsed [events/y
SXI	4.33d-2	[0.3,5.0]	8.31d-3	2.68d-1	1.01d+0	3.8d-5
Chandra	4.76d—6	[0.5,8.0]	4.02d-5	1.04d+2	2.16d+0	7.5d-3
Swift/XRT	3.75d-6	[0.3,10.0]	2.89d-4	2.98d+1	1.55d-1	3.3d-3
EP	8.73d-2	[0.5,4.0]	1.92d-3	1.00d-1	2.02d+0	1.4d-5
WEDGE	2.42d-4	[0.3,10.0]	5.78d-4 *	2.98d+1	6.70d+0	2.1d-1
XMM EPIC/PN	4.91d-6	[0.3,10.0]	6.54d-5	3.11d+2	1.17d+1	3.2d-2
eXTP/SFA	9.70d-7	[0.3,8.5]	2.37d-3	1.25d3	4.41d+0	5.9d-2

* assuming PSF 2x worse than Swift/XRT

X ray telescopes: Targeted search numbers

Assuming $T_{\rm slew} = 100 \, {\rm s}$, 3σ detection significance

	Sky fraction inside FoV	Energy band [keV]	Detection distance [Mpc]	Transients [events/yr]	Pulsation distance [Mpc]	Pulsed [events/y
SXI	4.33d-2	[0.3,5.0]	1.7d+0	3.1d-3	2.9d-1	2.3d-8
Chandra	4.76d—6	[0.5,8.0]	6.2d+1	1.0d+0	5.7d+0	1.3d-1
Swift/XRT	3.75d-6	[0.3,10.0]	2.7d+1	4.4d-1	3.1d+0	1.3d-2
EP	8.73d-2	[0.5,4.0]	1.4d+0	3.0d-3	1.7d-1	1.5d-8
WEDGE	2.42d-4	[0.3,10.0]	2.7d+1	4.4d-1	3.1d+0	1.3d-2
XMM EPIC/PN	4.91d-6	[0.3,10.0]	1.08d+2	1.6d+0	9.9d+0	1.6d-1
eXTP/SFA	9.70d-7	[0.3,8.5]	1.37d+1	1.9d+0	2.0d+1	3.1d-1

Targeted search

- Maximum detection \bullet distances for pulsations
- Assuming $T_{\rm slew} = 100 \ {\rm s}$

MGF spectrum

- Spectrum in [3,100]keV from RHESSI
- Low energy increase, not flat as assumed

