

CTAO LST-1 Observations Of Magnetar SGR 1935+2154: Deep Limits On Sub-second Bursts And Persistent TeV Emission

FRB-Italy, May 7th 2025

Gabriele Panebianco (INAF-OAS Bologna) On behalf of the CTAO-LST SGR 1935+2154 team: A. López-Oramas, A. Simongini, S. Mereghetti, A. Bulgarelli, P. Bordas, A. Carosi, A. Di Piano, I. Jiménez Martínez, R. López-Coto, T. Hassan, N. Parmiggiani, C. Vignali, R. Zanin

LST-1 Observations Of Magnetar SGR 1935+2154: Deep Limits On Sub-second Bursts And Persistent TeV Emission

• Aims.

- Search for potential TeV counterpart to SGR 1935+2154 emission (persistent, bursting)
- \circ $\,$ Insights on mechanisms of magnetar emission and Very-High Energy (VHE) processes
- Methods.
 - Stacked spectral analysis (25h) for persistent emission (2021-2022 observations)
 - **Burst Analysis** in 9 windows (0.1s) for transient emission [in *low-photon-statistics* regime]

Results

- No persistent nor transient VHE emission detected
- TeV Upper Limits (ULs) to *short magnetar burst emission* simultaneous to X-ray bursts.

Conclusions

• If TeV emission exists, conditions not covered by observations

Burst Analysis development for LST-1, can be applied to fast transients (e.g. FRBs)
 May 7th, 2025

The CTAO and LST-1

The CTAO

- Cherenkov Telescope Array Observatory
- > 60 telescopes, sensitivity ×10 improvement
- Full-sky Coverage from 2 sites (La Palma, Chile)
- Wide Field of View (>5°)
- Broad Energy Range (20 GeV 300 TeV)
- Fast repointing time (< 30s)

The LST-1

- Large-Sized Telescope Prototype (LST-1)
- Active since 2019
- Energy Range: 20 GeV 10 TeV

Artistic Rendering of CTAO North site (La Palma), with LST-1 on far left

Persistent Emission

Persistent Emission

• Standard Analysis on 25h of good-quality observations: 2021 (July-Sept.), 2022 (June)

LST COLLABORATION

- Standard Stacked Analysis (0.1 10 TeV) for Significance, Flux
- No detection overall (Figs. 1, 2) -> Upper Limits (ULs)
 - No nightly variability

Persistent Emission

- TeV ULs ~ X-ray flux
 - LST-1 improves H.E.S.S. ULs (Index=-2.5, 95% CL) •
- Agreement with Magnetar Models
 - Emission break expected in MeV
 - \circ Current MeV ULs ~10⁻¹⁰ erg s⁻¹ cm⁻²
 - \circ Current GeV ULs ~10⁻¹² erg s⁻¹ cm⁻²

- **Emission Detection of FRB Progenitors?**
 - PRSs likely powered by pulsar/magnetar in nebulae
 - FRB Progenitors might emit VHE γ -rays (PWNe or SNRs)
- Interesting targets for CTAO

Bursting Emission

Bursting Emission

Data Analysis

- Burst Analysis developed
 - Signal: a 0.1s Burst above a Poisson Background
 - New dataset obtained with optimized Cherenkov Cuts
- 9 X-ray Bursts simultaneous to Observations

Results

- No detection -> Bayesian Burst ULs [0.1 10] *TeV*
 - \circ Sensitivity $\approx 3.0 \cdot 10^{-8} \ ph \ s^{-1} \ cm^{-2}$
- Unbiased Burst Search: No detection
 - Sensitivity $\approx 6.2 \cdot 10^{-8} \ ph \ s^{-1} \ cm^{-2}$

#	Time of Alert ISOT UTC	Instrument	$\frac{\text{LST-1 } R_{BKG}}{s^{-1}}$	Ν _{5σ}	N _{ON}	Flux UL $10^{-8}s^{-1}cm^{-2}$	Fluence UL 10 ⁻⁹ erg cm ⁻²	
1	2021-07-07 00:33:31.670	Fermi-GBM	0.81±0.02	4	0	2.01	1.50	T V si ex
2	2021-09-10 23:40:34.460	Fermi-GBM	1.05±0.03	4	0	1.95	1.45	
3	2021-09-11 22:51:41.600	GECAM	0.95±0.03	4	0	2.03	1.51	
4	2021-09-11 23:55:45.872	NICER	1.01±0.03	4	0	1.94	1.45	
5	2021-09-12 00:34:37.450	GECAM	0.61±0.03	4	0	1.97	1.47	
6	2021-09-12 00:45:49.400	GECAM	0.66±0.03	4	0	1.96	1.46	
7	2021-09-12 22:16:36.200	GECAM	0.68±0.02	4	1	3.61	2.69	0
8	2021-09-12 23:19:32.080	Fermi-GBM	1.04±0.03	4	0	2.02	1.51	
9	2021-09-13 00:27:25.200	GECAM	1.04±0.03	4	0	1.95	1.45	
	STACKED $\delta t = 0.9s$		0.87±0.04	8	1	0.30	0.20	

Table 1VHE ULssimultaneous toexternal alerts on a0.1s time scale.

LST COLLABORATION

Bursting Emission

Discussion

• TeV ULs $\sim 10^{-3}$ X-ray Flux

• First X-TeV Magnetar Burst SED on 0.1s (Fig. 4)

• Agreement with Magnetar Models

• No TeV emission from "regular" short bursts

 Magnetar systems more complex than SGR 1935+2154 may emit High-Energy Gamma Flashes (HEGF)

Figure 4. Burst #1 Spectral Energy Distribution

Figure 4. Burst #1 Spectral Energy Distribution

Figure 4. Burst #1 Spectral Energy Distribution

Conclusions

Conclusions

- We analysed >25h of good-quality LST-1 observations
- No persistent TeV emission detected, in agreement with observations and models.
 - Cutoff expected at MeV for magnetars.

TeV ULs ~ X-ray flux

- We developed the **Burst Analysis** for short transients with low-photon-statistics
- No TeV Burst emission detected for 9 bursts simultaneous to LST-1 observations
 o Burst TeV ULs ~10⁻³X-ray Burst Flux
- TeV emission not ruled out for other similar sources (e.g., progenitors of FRBs)
 - Magnetars, GMFs, FRBs, short GRBs, fast transients... remain interesting targets for CTAO, LST-1
- Non-Consortium Scientific Paper to A&A (Submission this week) May 7th, 2025

Thank you

www.ctao.org

www.ctao.org

Magnetars

Magnetars

- Subclass of Isolated Neutron Stars (NSs)
 - High Magnetic Field $B \sim 10^{14-15} G$, Twisted Magnetosphere
 - Large Rotation Period ~ 1 12 s
- ≈ 30 in Galaxy and Magellanic Clouds
- Powered by **B** Decay: Persistent and Bursting emission

Bursting Emission

- Outburst periods ~ weeks (keV MeV)
- Short Bursts ~0.1 *s*, L~ $10^{36-43} erg s^{-1}$
 - **B** Stress cracks NS crust \rightarrow Hot plasma ejection
 - Cut-off Power Law / 2 Black Body
- Intermediate, Giant Flares (MGF) L~ $10^{44-47} erg s^{-1}$

Persistent Emission

- X-ray, pulsed emission
- Soft X-ray Thermal Component
 - Heating powered by **B** decay
 - Peak at ~0.5 keV
- Hard X-ray Power-Law Component
 - Inner magnetosphere e^- scatter thermal photons
 - Multiple Resonant Cyclotron Scattering
- Cut-off ~1 MeV not observed
 - COMPTEL MeV Upper Limits $\sim 10^{-10} erg \ s^{-1} cm^{-2}$
 - \circ Fermi-Lat GeV Upper Limits $\sim 10^{-12} erg \ s^{-1} cm^{-2}$

- Galactic Magnetar in SNR G57.2+0.8 with SGR activity
- Discovered in 2014, many outburst periods
 - Period ~ 3.24 s, Age ~ 3.6 kyr, Distance ~ 4.4 kpc
 - BB Temperature (0.47 ± 0.02) keV, PL index (1.8 ± 0.5)
- FRB 20200428D
 - Detected X-ray and Radio bursts simultaneously!
 - Magnetars can produce FRBs!
- Is there TeV emission in coincidence of SGR 1935 activity?
 - LST-1 Observations: 33 h in July, September 2021, June 2022
 - 9 simultaneous X-ray Bursts
 - Reconstruction adapted for real Observing Conditions

SNR G57.2+0.8 environment SGR 1935+2154 in the center THOR 1.4 GHz, XMM Newton (Zhou et al., 2020)

Persistent Emission

LST COLLABORATION

СТА

The low-photon-statistics regime

- Significance, Flux Estimation require ≥ 10 photons
 Wilks' Theorem
- Not possible in low-photon-statistics regime

o For LST-1: ≤ 10s

- Short GRBs, Fast Radio Bursts (FRBs), Magnetar Bursts and Flares
- We developed the Burst Analysis for CTAO LST-1
 Based on Poisson statistics
- Science Case: Magnetar Bursts of SGR 1935+2154

The CTAO LST-1

17/03/2025

Soft Gamma Repeater

Transient Emission

Burst Analysis Cuts (Not in paper)

- Li&Ma, MLE not applicable on 0.1s time scale due to *low-photon-statistics* regime
- Must redefine sensitivity and optimise cuts
- Hypothesis Test: *Poisson* Background
 - $N_{5\sigma}$: counts to have a detection in a 0.1s bin above a constant background rate measured from OFF region.
 - ε: cuts Efficiency on γ-rays, measured from MC simulations
 - Sensitivity $\xi = \frac{N_{5\sigma}}{\epsilon}$
- Optimal Burst Cuts: $g_{cut} = 0.75$, $i_{cut} = 50 p.e.$, $\theta_{cut}^2 = 0.08 \ deg^2$

LST COLLABORATION

Transient Emission

$$\mu_{S,UL} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha | 2(N_{ON} - 1)) - \mu_{BKG}$$

Flux UL = $\mu_{s,UL}$ / Exposure

- $\alpha = 0.95$ Confidence Level
- *F* Cumulative Distribution Function of χ^2 \circ DOF = 2(N_{ON} - 1)